
Runtime Environment

Copyright © 2021 NOA GmbH

Administrator Manual

MAA0001

2

Runtime Environment

 Copyright © 2021 NOA GmbH

Table of Contents

1 Preface

 4

1.1 Summary ... 5
1.2 Target Audience .. 5
1.3 Prerequisites .. 5

2 What Is mediARC

 6

3 System Architecture Overview

 9

3.1 mediARC Database .. 13
3.1.1 Overview .. 13
3.1.2 Installation ... 14
3.1.3 Maintenance ... 15

3.1.3.1 Patching The mediARC Schema ... 15
3.2 mediARC Core Modules ... 16
3.3 mediARC Network Ports .. 17
3.4 mediARC Startup and Shutdown Sequence .. 18
3.5 General Public Path ... 19

4 LicenseServer (LS)

 20

4.1 Overview .. 21
4.1.1 License File ... 22
4.1.2 License Models ... 23
4.1.3 License Terms and Conditions ... 24
4.2 Installation .. 24
4.3 Configuration .. 24
4.3.1 Init Data Window .. 25
4.3.2 User Rights Window .. 26

4.3.2.1 User Rights Definitions ... 28

5 DBDistributor (DBD)

 31

5.1 Overview .. 32
5.2 Installation .. 33
5.3 Configuration .. 33
5.3.1 Database Connection Setup .. 34

5.3.1.1 Failover Database Connection .. 35
5.3.2 Init Data Window .. 37
5.3.3 Log Window .. 39

6 mediARC Client Applications

 40

6.1 mediARC GUI ... 41
6.2 mediARC WEB ... 42

7 mediARC API (MAPI)

 43

8 ProcessorHost (PH)

 45

8.1 Overview .. 46
8.2 Installation .. 48
8.3 Configuration .. 48
8.3.1 Init Data Window .. 48

8.3.1.1 Task Log Configuration ... 51
8.3.2 Verify Connection ... 52
8.4 GarbageCollector ... 52
8.5 User Synchronization ... 54

9 FileManager (FM)

 56

9.1 Overview .. 57

3

Runtime Environment

 Copyright © 2021 NOA GmbH

Table of Contents

9.2 Installation .. 58
9.3 Configuration .. 59
9.3.1 Init Data Window .. 59
9.3.2 mediARC File Access ... 60
9.4 FileManager Instances ... 61

10 RemoteFileAgent (RFA)

 62

10.1Overview .. 63
10.2Installation .. 64
10.3Configuration .. 64
10.3.1 Init Data Window .. 65
10.3.2 mediARC File Access ... 67
10.3.3 Folder Monitor .. 67
10.3.4 Access Monitor ... 69

11 WebPreviewServer (WPS)

 71

11.1Overview .. 72
11.2Installation .. 73
11.3Configuration .. 74
11.3.1 Init Data Window .. 74
11.3.2 Prelisten Cache ... 76
11.4Status Information ... 77

12 ServiceConsole (SC)

 79

12.1Overview .. 80
12.1.1 Adding Services Manually ... 81
12.1.2 Editing Services Manually .. 82
12.2Installation .. 82
12.3Configuration .. 83
12.3.1 Settings Window ... 83
12.3.2 User Authentication .. 84

13 StorageConnector (STORCON)

 85

13.1Overview .. 86
13.2Installation .. 87
13.3Configuration .. 87
13.3.1 Policy File ... 88
13.3.2 Windows Registry ... 90
13.3.3 mediARC File Access ... 91
13.4StorageConnector GUI ... 93

14 NOA actLINE

 96

15 NOA ingestLINE

 100

16 Glossary

 103

17 Impressum

 108

Preface

5

Runtime Environment

 Copyright © 2021 NOA GmbH

1 Preface

Summary1.1

This is an Administrator Manual describing the general mediARC system architecture, mediARC's

core modules, native client applications and NOA products compatible with mediARC. In order

to provide deeper insight in mediARC's most basic functionalities, primary setup and runtime

administration of its core modules is provided.

Target Audience1.2

This Administrator Manual targets mediARC system administrators and system architects.

Prerequisites1.3

The following skills are required to follow the instructions shown in this document:

· basic knowledge of mediARC

· knowledge of local IT infrastructure

· proficiency in server administration and networking

The following tools are required to follow the instructions shown in this document:

· access to mediARC servers

· administrative user rights on mediARC servers

· administrative rights to local network resources

· mediARC installers

What Is mediARC

7

Runtime Environment

 Copyright © 2021 NOA GmbH

2 What Is mediARC

Broadcasters and archivists today face daunting challenges when it comes to ensuring that

media content is preserved and accessible for the long term. Many broadcasters see their media

archive as the heart and soul of their organization. Yet the sheer number of content sources and

formats, and the fact that content is constantly changing and evolving, makes it difficult to

manage, especially when it comes to digitizing, describing, linking, and storing that content in a

way that makes it easy to find and access. Broadcasters and archivists need an asset

management system that can ingest, describe, archive, and deliver content so that it fits archival

requirements not just for the present, but also for decades into the future. Whereas production

departments typically focus only on the next playout date, archival description of content has to

serve history, cultural identity, and cultural heritage.

Based on NOA’s proven, easy-to-use, open technologies, the mediARC system is a flexible

framework for Archive Asset Management that makes the whole process easier and more

efficient for broadcasters and archives of all sizes. mediARC’s modular structure means you can

scale the application perfectly to fit your own performance, security, and distributed usage

requirements.

mediARC answers the need for structured and flexible content management that has to last for

decades, and comes with a range of powerful tools that can digest petabytes of information.

mediARC can handle the complex structures needed for proper description and efficient use of

an archive’s content, so you can link media data to metadata and storage on a granular level,

and even apply FRBR (Functional Requirements of Bibliographic Records). A powerful and

exceptionally fast search engine, capable of combining structured and full-text search

capabilities, allows easy access to information through a graphical user interface.

Developed in cooperation with dedicated broadcasters, the mediARC system is designed to

meet the requirements in three fundamental areas:

Metadata:

· Descriptive data of both general and media-specific nature.

· Annotation of content for semantic cataloging.

· Extensive relationships of information.

8

Runtime Environment

 Copyright © 2021 NOA GmbH

Media:

· Content that is stored in the system's media archive as essence data.

· Additional technical information such as Markers.

Workflows:

· Pre-configured processes managing any transaction in the system like ingest or retrieval of

archive content.

· Automatic processes and human interaction.

mediARC is a flexible framework for Archive Asset Management. It allows for

tightly integrated handling of both media content and its associated metadata, whilst

putting interaction with the system under the control of a dedicated workflow engine. The

system is highly suitable for the needs of broadcasting corporations with high information

turnover, as well as for large audio archives with a complex metadata structure.

System Architecture Overview

10

Runtime Environment

 Copyright © 2021 NOA GmbH

3 System Architecture Overview

mediARC is a client-server computer system consisting of various modules and applications

connected via a computer network.

Internally, the system is logically organized into 3 types of so called Access Domains (separated

on the network level for security):

· System Domain: contains NOA technology that is responsible for media and metadata

processing, ingesting, and outgesting. It is the bridge between users and the archive. Typically

ingests and outgests have needs for transformations such as rewrapping, transcoding or the

need to deliver different sets of metadata depending on the target beneficiary. System

Domain is the place where a central temporary storage (also called General Public Path or

GPP) in the form of simply registered n- network resources is exclusively used to do the job.

· Archive Domain: contains the archive. It may be resident inside an HSM or a disk storage.

Depending on the kind of archive storage, the archive domain is always accessed via a

dedicated method, the most secure method is given via the NOA Storage Connector. An

institution may have one or many archive domains.

· User Domain: contains the users of the archive who are allowed to see and hear content via

proxies and get access to a copy of archive files. User Domains may be separate local

networks (such as organizational entities) or remote sites (such as in regional stations). An

institution may have one or many user domains.

For further information about mediARC Access Domains, please refer to the mediARC

Domains TechNote.

The components of the mediARC system can be divided into 4 categories:

· mediARC modules (green)

· mediARC client applications (green)

· actLINE products (yellow)

· ingestLINE products (red)

11

Runtime Environment

 Copyright © 2021 NOA GmbH

12

Runtime Environment

 Copyright © 2021 NOA GmbH

The following mediARC modules represent the core parts of the mediARC system:

 mediARC Database
The heart of every mediARC system, built on market-leading

Oracle technology.

 DBDistributor Enables managed database connections of the mediARC GUI.

 ProcessorHost Connects Processors to the mediARC database.

 FileManager
Responsible for file transfers, both within the archive, and in and

out of the archive.

 RemoteFileAgent
Remotely receives files from FileManager and synchronizes users

from Windows Active Directory.

 WebPreviewServer
Streaming server for prelisten/preview requests from mediARC

WEB.

 mediARC API PL/SQL package for API access to the mediARC system.

Normally, every mediARC installation also includes the following actLINE apps:

 LicenseServer Allows to count and control the amount of granted licenses.

 StorageConnector
A file access agent, which handles the access of archive storage to

the rest of the system.

 ServiceConsole
Provides a centralized, real-time overview of nearly all NOA

processors running on distributed servers.

13

Runtime Environment

 Copyright © 2021 NOA GmbH

mediARC Database3.1

3.1.1 Overview

The mediARC Database is a database schema which is generally deployed under ORACLE

technology by NOA engineers during a system installation. It is either created by dedicated

scripts or by the import of a database dump.

The mediARC database is typically installed on a separate Linux server or server cluster

dedicated for this role.

Warning: It is highly recommended that customers do not manipulate with the

mediARC Database directly and always rely on NOA professional services instead!

For the sake of security and optimum performance, direct connections to the mediARC Database

are limited to special mediARC modules:

· DBDistributor

· ProcessorHost

· mediARC WEB

· mediARC API

A common mediARC Database setup

Even though more complex database setups are possible with mediARC, these are far less

common. System complexity rises with:

· the use of more than one Access Domain of one type (System Domain, Archive Domain, User

Domain)

· the use of more than one mediARC Database

Note that system complexity does not rise with the use of various high-availability (HA)

setups for the mediARC database, as from mediARC's point of view these are being

handled by and within the Oracle platform itself and not by NOA software.

14

Runtime Environment

 Copyright © 2021 NOA GmbH

An example of a very complex mediARC database architecture.

For different scenarios, please see chapter DBDistributor > Failover Database

Connection.

3.1.2 Installation

· Install Oracle Server

o Installing Oracle Server is quite easy following the setup instructions.

· Create an instance

o "Unicode standard UTF-8 AL32UTF8" as character set

o "Data Warehouse" as database type

Note that as the Oracle instance could be created at a later stage, it is possible (and

recommended) to create the Starter Database and then use the Advanced option to

configure it correctly.

· Install Oracle Client

o Follow setup instructions and choose "Administrator" installation type when asked.

15

Runtime Environment

 Copyright © 2021 NOA GmbH

Note that DBDistributor needs a 32bit version of the Oracle Client to run properly!

· Configure Client connection

o Using Net Configuration Assistant provided by Oracle is quite easy. Just select "Local Net

service Name configuration" and choose what you want to do with a connection:

§ Add

§ Reconfigure

§ Delete

§ Rename

§ Test

o Important things to know when making a connection:

§ Service Name = Global Database Name defined while creating the Oracle Instance

§ Host name = Oracle server name or IP address

Note that it is recommended only to change the other settings (like protocol and port) if

it is absolutely necessary!

Please always test the connection!!!

· Create a mediARC schema

o An empty mediARC database can be created from existing scripts.

o With existing installations however, a migration from the old database(s) is usually possible

and the Customer may receive an Oracle dump (export file).

Never try to manipulate with the mediARC database without consulting with NOA first!

3.1.3 Maintenance

Generally there are no special requirements for maintenance. Normal Oracle rules apply.

Note that while it is highly recommended to keep the patch level of the mediARC

database up-to-date, these updates are not enforced or done automatically by NOA and

are always first discussed and agreed upon with the Customer.

3.1.3.1 Patching The mediARC Schema

Patches are provided for updating an existing mediARC schema under Service & Maintenance

Contract in order to make latest features available and to fix broken functionality.

16

Runtime Environment

 Copyright © 2021 NOA GmbH

Note that DB patches are applied by NOA engineers. It is, however, possible to agree on

a different scenario based on the Customer's wishes and resources.

As it is not recommended for Customers to manipulate with the mediARC database directly, this

chapter will give only a brief general overview of how mediARC database patching works:

· a new DB patch is released by NOA

· a JIRA ticket is opened by NOA, informing the Customer of a new available DB patch for

mediARC

· if no reasons not to proceed are identified, a patch window is scheduled (normally 0.5 - 1

hours)

· before the DB patch is applied:

o the mediARC system is shut down (see chapter mediARC Startup and Shutdown Sequence)

and the availability of an up-to-date database backup is checked

o if not already available, a database management tool (e.g. Oracle SQL Developer (SQLD)) is

installed and configured on a machine inside the Customer's network (DBD or PH server)

o DB patching scripts are applied by NOA

o error logs are checked for errors

o any non-ignorable errors are resolved by NOA Customer Support

o once all DB patches were executed correctly, the system can be started (with new software

versions where necessary)

mediARC Core Modules3.2

At the heart of each mediARC system is the mediARC database. In order to use the database,

several core modules are present to facilitate the connections of users and other system modules

and applications. These include:

· DB Distributor

· ProcessorHost

· LicenseServer

· mediARC API

mediARC Core Modules

17

Runtime Environment

 Copyright © 2021 NOA GmbH

mediARC Network Ports3.3

The following are the default network ports used by mediARC and its components:

Application Description Port

StorageConnector Client Interface 5707

Service Console 5505 (reserved, N/A)

FileCollector Service Console 5511

FolderScanner Service Console 5512

WaveScanner Service Console 5513

DBScripter Service Console 5517

LicenseServer Client Interface 5557

Old Legacy Client Interface

(jobDB Client only)

5756

Service Console 5557

DBDistributor Client Interface 5767

Service Console 5567

WaveButler Service Console 5577

MediaButler Service Console 5579

ProcessorHost Client Interface 5787

Web Interface (Flow Logs, Pico

UI)

5788

Service Console 5587

RemoteFileAgent Client Interface 5791

Service Console 5591

EMailer Service Console 5593

Dactylo Indexer Service Console 5595

FileManager Service Console 5597

VideoFileAnalyzer Service Console 5514

VideoScanner Service Console 5515

WebPrelistenAgent

(obsolete)

Service Console 5599

WebPreviewServer Client Interface (HTTP) 5799

18

Runtime Environment

 Copyright © 2021 NOA GmbH

mediARC Startup and Shutdown Sequence3.4

By design mediARC is a hierarchical system of interconnected modules and applications,

governed by licenses.

Due to this fact, a system startup and/or shutdown needs to be carried out in special order.

Startup

Order Application, Service

1 Oracle database

2 LicenseServer

3 ProcessorHost, DBDistributor

4 FileManager, DBScripter, WaveButler, MediaButler

5 the rest of the modules and applications

Shutdown

Order Application, Service

1

NOA Record, CD Lector, MediaLector, FrameLector, AutoCut, BarcodeStation, CLIP,

DBScripter, EMailer, FileCollector, FolderScanner, MetaDataFinder, QualityChecker,

ServiceConsole, UniversalDialoguer, VideoFileAnalyzer, VideoScanner, WaveScanner

2 FileManager, DBScripter, WaveButler, MediaButler

3 ProcessorHost, DBDistributor

4 LicenseServer

5 Oracle database

Note that RemoteFileAgent and StorageConnector do not have a LicenseServer

connection, which is why they can be turned on and off anytime during the procedure.

19

Runtime Environment

 Copyright © 2021 NOA GmbH

General Public Path3.5

The General Public Path (often referred to as GPP) is the storage path for inter-task file

communication during the execution of a Flow Template. It resides on a centrally reachable

physical storage, to which only Processors have read and write access.

Being mediARC's central storage, the GPP can serve as destination, workplace,

and source.

The GPP acts mostly as intermediate and temporal cache-path to serve transcoding engines or

3rd party processes such as CLIP. n- paths are registered within mediARC and are known to the

ProcessorHost. An intelligent round robin distribution is handled by the ProcessorHost which

provides disk resources dynamically based upon free space. An amount of up to 20-30 GPP's are

quite typical (and not limited) so that additional GPP's can quite easily be added to the pool.

Supported environments for GPPs are CIFS/SMB shares only.

For further information, please refer to the mediARC Domains TechNote.

LicenseServer (LS)

21

Runtime Environment

 Copyright © 2021 NOA GmbH

4 LicenseServer (LS)

Overview4.1

The LicenseServer in a mediARC system takes the role to define the data used, to count and

control the amount of granted licenses and to specify the user rights.

In a mediARC environment the LicenseServer needs to run on a separate Windows server, usually

in combination with the DBDistributor and the ProcessorHost.

The LicenseServer Window

In the main window you can view the license information, configure the LicenseServer and User

Rights.

22

Runtime Environment

 Copyright © 2021 NOA GmbH

The following buttons are available:

 Change Ini-Data: shows the application wide settings window.

 Show License Information: shows the license file contents.

 Change User Rights: shows the 'Edit users, groups and rights' window used for managing

the user rights for the ServiceConsole.

Note that under normal conditions, LicenseServer will be executed as a Windows service.

On occasions, it is possible to run LicenseServer as an executable program. Please make

sure to stop the service before running the executable.

The License Information window

Warning: Stopping the LicenseServer causes all related programs to stop working! Please

refer to the mediARC Startup and Shutdown Sequence chapter to plan this step

accordingly...

4.1.1 License File

Note that the LicenseServer is locked against a license file. The "license.dat" file is an

128-bit encrypted binary file which contains the "granted licenses". Every NOA customer

will obtain this file from support@noa-archive.com with its contents depending from

the purchased licenses for the "Applications". The license file may be further locked

against a date or a WIBUBOX device. The WIBUBOX may be either attached locally by

USB or Parallel Port, or provided remotely through a TCP/IP connection.

23

Runtime Environment

 Copyright © 2021 NOA GmbH

License File Contents

The license file contains information about the granted licenses:

· Customer: the name of the customer.

· FileID: the license file identification number.

· Dongle: the serial number of the WIBU key dongle.

· Free Until: the date until the LicenseServer can be used without a dongle.

· DongleID: the last read dongle identification number

· File created on: the date the license file has been created.

· Granted licenses:

o Application: the name of the licensed application.

o Granted Licenses: the number of purchased licenses.

o License Model: Restrictive vs. Warning. See License Models.

o License Peak: the number of exceeded licenses. See License Models.

o License Over: the hours of exceeded number of licenses.

o Last License Update: the date and time of the last change.

4.1.2 License Models

A NOA customer can be granted two different kinds of licenses.

· Restrictive: restricts the number of available licenses to exactly the amount granted and

specified in the license file.

· Warning: allows the customer to use more licenses than the amount granted and specified in

the license file, however, with a notification message during application startup, that a certain

amount of granted licenses has been exceeded and that this will be logged. Also, the

LicenseServer will log the count of exceeded licenses (License Peak) and the count of hours the

number of granted licenses had been exceeded (License Over).

NOA applies the Warning model to customers who might first only see how many

licenses are really needed. Typically, after a specific time the amount of exceeded licenses

24

Runtime Environment

 Copyright © 2021 NOA GmbH

and the corresponding amount of hours are known and the customer is notified to

purchase the correct amount of licenses. During this procedure also the license model is

changed by NOA towards Restrictive.

4.1.3 License Terms and Conditions

Current License Terms and Conditions can always be found in the dedicated section of NOA's

official website www.noa-archive.com.

Installation4.2

To install or reinstall the LicenseServer, simply run the installer and follow the instructions.

During installation you can decide whether you want to install LicenseServer as a service or as an

application (or both).

After the installation is complete, have a look at the history file, which is installed with the

application, for changes.

Prerequisites

· LicenseServer needs a pre-installed OracleClient (32-bit version) pointing to the right database

schema.

Note that in 64-bit versions of Windows, the LicenseServer needs to be installed in a

directory whose full path does not contain special characters (e.g. C:\NOA\) and not in

the default directory "C:\Program Files (x86)\NOA\" because the brackets "(" and ")" will

break the connection!

Make sure that you place the "license.dat" file in the same directory as the

licenseserver.exe application!

Configuration4.3

The configuration data of the LicenseServer is stored in the Windows registry, thus it is

available for the service as well as for the application. Please take care which Windows

user account you use when configuring the application as the settings will be available

only for this user account. This is important when running the service version later on

because the service must then be configured to use the same user account which was

used during the application configuration step.

The registry entries can be found in HKEY_USERS\.DEFAULT\Software\NOA\LicenseServer.

25

Runtime Environment

 Copyright © 2021 NOA GmbH

4.3.1 Init Data Window

There are some application-wide settings that can be found either using the Change Ini Data

button .

The Set Init Data window of the LicenseServer

The following Init Data settings are used by the LicenseServer:

Network Tab

BinAddress: The old binary (as opposed to the new NoaComm) IP interface address of the

license server (may be 0.0.0.0 to bind to first interface found). Defaults to "0.0.0.0".

BinPort: The old binary (as opposed to the new NoaComm) IP interface port number of the

license server. Defaults to "5756".

CommAddress: The IP interface address of the license server (may be 0.0.0.0 to bind to first

interface found). Defaults to "0.0.0.0".

CommPort: The IP interface port number of the license server. Defaults to "5557".

Rights DB Tab

NTServer: The Hostname or IP address of the domain server providing user/group information.

If empty, the local machine will be used.

ExplizitUsers: The Username tokens (comma separated values) which can be used for

authentication toward applications (in ServiceConsole for example) which are independent of

actual domain users. The access permission of the user can then be defined in User Rights

Management. See User Rights.

Note that the string "explizit" as used in the Init Data window contains a spelling error.

Unfortunately fixing it would break backwards compatibility with previous versions of

LicenseServer.

26

Runtime Environment

 Copyright © 2021 NOA GmbH

Dongle Tab

Dongle Server: The IP address of the WIBU dongle server (if the dongle is not connected to the

local machine).

Debug Tab

DebugLogFile: A valid path and file name for debug messages to be written to (e.g. "C:

\LSlogs\LS.log"). If a file name is provided, debug messages will be written to this file. The

amount and detail of debug messages depends on the setting of DebugLogLevel. If the file

name is empty, no debug messages are written. Specifying a debug log file is recommended for

debugging and problem analysis only. During normal operation, debug messages should be

disabled. Writing a debug file may produce significant amounts of data and may have an impact

on application or system performance. It is recommended to watch storage resources when

writing a debug log file. A local path is preferred over a server share to guarantee file access.

Default value: none.

DebugLogLevel: The level of detail for debug messages (on a scale from 1 to 5, where 5

represents the most detailed logging). A high level can result in a significant amount of data

written. Debug levels should be used with care and debugging should be switched off when not

needed. A general shortage in storage resources may influence system performance and

stability. Default value: "3".

Debug levels are:

"1" error messages

"2" warning messages

"3" normal messages

"4" info messages

"5" debug messages

Init Data Tab

Settings for the jobDB Database, not applicable to mediARC systems.

4.3.2 User Rights Window

Whenever mediARC administrators need to connect to one of the mediARC modules running as

Windows service with the ServiceConsole, setting appropriate user rights becomes necessary.

Only users who have granted rights may be able to see NOA services within the ServiceConsole.

This User Rights Management (URM) is defined by the LicenseServer, in the User Rights window.

There are two ways to create or modify existing user rights:

· If the LicenseServer is running as a GUI application, click the Change User Rights button.

· If the LicenseServer is running as a Windows service, stop the LicenseServer and use the

RightsConfig tool (available as NoaRightsConfig.exe in the LicenseServer installation

directory).

Both ways open the same window.

27

Runtime Environment

 Copyright © 2021 NOA GmbH

The LicenseServer's User Rights Window

In the User Rights window, a mediARC administrator is able to define which Windows

user/group is allowed to access which NOA service application.

The following buttons are available:

 Create New User: creates a new User in the list.

 Create New Group: creates a new User Group in the list.

 Delete Selected User or Group: deletes the currently selected User or Group.

 Load Rights From File: allows to load a rights file (see next chapter) with user rights

definitions.

The displayed list of User accounts and Groups is either created locally or retrieved from the

domain server which defined in the Rights DB tab of the LicenseServer's Init Data window.

Note that if you want to select another domain controller from which the Windows

user/group accounts are retrieved you have to change the NTServer setting in the Init

Data window of the LicenseServer and restart the LicenseServer.

User rights are granted to the currently selected User or Group by moving them from the "Does

not own rights" pool to the "Owns rights" list in the Rights tab:

· Single arrow: moves the selected user right.

· Double arrow: moves all user rights.

28

Runtime Environment

 Copyright © 2021 NOA GmbH

In order for the changes to be saved, LicenseServer needs to be restarted. The

LicenseServer keeps the User Rights DB stored in the Windows registry to load settings on

startup and save them on server shutdown.

All Users with granted user rights are being stored in the Windows registry

HKEY_LOCAL_MACHINE\Software\NOA\UserRights\Users

All Groups with granted user rights are being stored in the Windows registry

HKEY_LOCAL_MACHINE\Software\NOA\UserRights\Groups

Explicit Users
From time to time it is necessary to grant access even to users who are not member of the

Windows domain the LicenseServer is running in. This is possible via the ExplizitUsers setting in

the Init Data window of the LicenseServer, where authentication strings can be added manually

(e.g. ‘donaldduck’). To add more than one authentication string, the entries have to be separated

with a comma ‘,’.

The manually added authentication strings will show up in the User/Group list of the User Rights

window, as a User of the (virtual) group ExplizitUsers. It is possible to set the access rights for

these "explicit users" the same way as for the regular Windows users.

The authentication strings of explicit users can be used in manually added registrations in

the ServiceConsole (see the ServiceConsole chapter).

4.3.2.1 User Rights Definitions

The LicenseServer keeps a User Rights DB stored in the Windows registry to load

settings on startup and save them on server shutdown. The default registry path to the

User Rights DB is HKEY_LOCAL_MACHINE\Software\NOA\UserRights on the server

the LicenseServer is running on.

In order to define or add a set of user rights to the User Rights DB, either a new rights file needs

to be created or an already existing rights file need to be taken and loaded from the User Rights

window.

To create a new rights file, use the following format:

• one right per line

• right name and description separated by a comma ‘,’

A valid rights file may look like this:

LICENSESERVER.MONITOR, LicenseServer Console (Monitor)
LICENSESERVER.CONTROL, LicenseServer Console (Full control)

29

Runtime Environment

 Copyright © 2021 NOA GmbH

DBDISTRIBUTOR.MONITOR, DBDistributor Console (Monitor)
DBDISTRIBUTOR.CONTROL, DBDistributor Console (Full control)
DBSCRIPTER.MONITOR, DBScripter Console (Monitor)
DBSCRIPTER.CONTROL, DBScripter Console (Full control)

The name represents the Windows registry key for the user right.

The description represents the display name used in the User Rights window.

User rights can be set for the all applications, supported by the ServiceConsole. Each application

has two different types of access rights:

· .MONITOR: The connected user has the ability to view service status but cannot change

service configuration.

· .CONTROL: The connected user has the ability to view service status and to change service

configuration (i.e. full control)

The following User Rights definitions are supported:

· BarcodeStation

o ServiceConsole.BarcodeStation.Monitor

o ServiceConsole.BarcodeStation.Control

· Clip

o CLIP.Monitor

o CLIP.Control

· DBDistributor

o DbDistributor.Monitor

o DbDistributor.Control

· DBScripter

o ServiceConsole.DbScripter.Monitor

o ServiceConsole.DbScripter.Control

· Emailer

o ServiceConsole.EMailer.Monitor

o ServiceConsole.EMailer.Control

· FileManager

o ServiceConsole.FileManager.Monitor

o ServiceConsole.FileManager.Control

· LicenseServer

o LicenseServer.Monitor

o LicenseServer.Control

· MediaButler

o ServiceConsole.MediaButler.Monitor

o ServiceConsole.MediaButler.Control

· MetaDataFinder

o MetaData.Monitor

o MetaData.Control

· ProcessorHost

o ServiceConsole.ProcessorHost.Monitor

o ServiceConsole.ProcessorHost.Control

30

Runtime Environment

 Copyright © 2021 NOA GmbH

· RemoteFileAgent

o RemoteFileAgent.Monitor

o RemoteFileAgent.Control

· Uniport

o Uniport.Monitor

o Uniport.Control

· Uniport FileCollector

o Uniport.Monitor

o Uniport.Control

· Uniport FolderScanner

o Uniport.Monitor

o Uniport.Control

· VideoFileAnalyzer

o ServiceConsole.VideoFileAnalyzer.Monitor

o ServiceConsole.VideoFileAnalyzer.Control

· VideoScanner

o ServiceConsole.VideoScanner.Monitor

o ServiceConsole.VideoScanner.Control

Universal user rights, independent from the application, can be given by the ANY user

right:

· ANY.MONITOR

· ANY.CONTROL

DBDistributor (DBD)

32

Runtime Environment

 Copyright © 2021 NOA GmbH

5 DBDistributor (DBD)

Overview5.1

DBDistributor is used by mediARC GUI as an interface to the mediARC database. It allows to

configure database connections with optional fail-over connections.

A basic DBDistributor setup

In a mediARC environment the DBDistributor needs to run on a separate Windows server, usually

in combination with the LicenseServer and the ProcessorHost.

DBDistributor Main Window

33

Runtime Environment

 Copyright © 2021 NOA GmbH

In the main window you can create new database connections, view the connection status or

delete connections. It is also possible to deactivate a connection temporarily by clicking the

checkbox in the active cell.

Following buttons are available:

 Show Log: Shows the DBDistributor log window.

 Change Ini Data: Shows the application wide settings window.

 Add New Database Connection: Adds a new database connection.

 Delete Database Connection: Removes a database connection.

Note that under normal conditions, DBDistributor will be executed as a Windows service.

On occasions, it is possible to run DBDistributor as an executable program. Please make

sure to stop the service before running the executable.

Warning: Stopping the DBDistributor causes all related programs to stop working!

Please refer to the mediARC Startup and Shutdown Sequence chapter to plan this

step accordingly...

Installation5.2

To install or reinstall the DBDistributor, simply run the installer and follow the instructions.

During installation you can decide whether you want to install DBDistributor as a service or as an

application (or both).

After the installation is complete, have a look at the history file, which is installed with the

application, for changes.

Prerequisites

· DBDistributor needs a pre-installed OracleClient (32-bit version) pointing to the right

database schema.

Note that in 64-bit versions of Windows, the DBDistributor needs to be installed in a

directory whose full path does not contain special characters (e.g. C:\NOA\) and not in

the default directory "C:\Program Files (x86)\NOA\" because the brackets "(" and ")" will

break the connection!

Configuration5.3

The configuration data of DBDistributor is stored in the binary 'config.dat' file in the

DBDistributor installation directory.

34

Runtime Environment

 Copyright © 2021 NOA GmbH

5.3.1 Database Connection Setup

To add a new connection setting, click on the Add New Connection button .

If you want to modify an existing entry you have to click on the ellipsis button . The

connection detail dialog will appear.

DBDistributor Connection Configuration

The dialog window allows you to set the following parameters:

Active: Selects whether the connection is allowed to be used or not. If a connection is inactive,

client connections to the database are rejected. Note that existing connections are not dropped

if a connection is switched from active to inactive state.

Alias: Database alias name. This name is used by clients to specify which database connection

they want to use. The alias must be unique.

Password: If a password is set, only clients with a valid password or clients found in the

acceptance list (accessible through the Edit Acceptance List button on the top panel) are

accepted.

Server Type: The database server type (Oracle, MS SQL). For mediARC the server type should be

set to Oracle.

Primary DB: Connection string for the primary database with one name-value property pair

each row.

· Oracle connections use the properties ServerName, LoginName and LoginPassword. Note

that the server name represents the TNS alias as set in the Oracle config file tnsnames.ora.

· MS SQL connections use the same properties and DBName additionally. Here the server name

is the host name of the database server and DBName is the name of the database instance.

35

Runtime Environment

 Copyright © 2021 NOA GmbH

Failover DB: Connection string for failover database connections. The failover connection is

used if the primary connection has an error status. For the string syntax see Primary DB above.

For more information see the next chapter Failover Database Connection.

Note that whenever the connection data changes it takes a few seconds until the status

icon is updated.

If you want to restrict connections to explicit listed hosts you have to click on the Edit

Acceptance List symbol. In the dialog window that will appear you can list the host names

either by name or IP number – one host per line. If you don't want to use the acceptance list you

can leave it empty. In that case DBDistributor will allow connections from any host on the

network.

5.3.1.1 Failover Database Connection

The Failover DB connection of DBDistributor is used for setting up an alternative database

connection, not an alternative database.

Example configurations (from simplest to most complex):

The most common simple mediARC Database setup

The same simple mediARC Database setup with a failover connection to the same

database

36

Runtime Environment

 Copyright © 2021 NOA GmbH

Note that mediARC does not provide for any kind of database synchronization!

While it is possible to have two separate databases set up with database synchronization,

this must be done on Oracle level (RAC) outside of the mediARC environment. The

DBDistributor only provides a way to use an alternative connection if the primary DB

connection is not available, and does not distinguish between just another DNS

name/port to the same DB, or actually a separate database instance with replicated data.

Because mediARC itself does not provide any kind of database synchronization,

from mediARC's perspective this setup is identical to the previous one

When multiple User Domains are configured within a mediARC system, one DBDistributor is

enough to facilitate connections to all users:

One DBDistributor used for connecting users from various User Domains to the

same mediARC Database

37

Runtime Environment

 Copyright © 2021 NOA GmbH

Should more than one mediARC Database be present in a highly complex system, it is possible

to define multiple database connections in just one DBDistributor instance. However, other

components which do not have this possibility, would have to be multiplied accordingly.

An example of a highly complex mediARC system setup with multiple databases and multiple User

Domains

5.3.2 Init Data Window

There are some application-wide settings that can be found either using the Change Ini Data

button or remotely by using the ServiceConsole.

The Init Data Window of DBDistributor

38

Runtime Environment

 Copyright © 2021 NOA GmbH

Note that to restrict database access, it is possible to set a connection password and to

set a list of accepted IP addresses.

The following Init Data settings are used by the DBDistributor:

Default Tab

ServerAddress: The IP interface address for listening for mediARC GUI connections (may be

0.0.0.0 to listen on any interface). Defaults to "0.0.0.0".

ServerPort: The IP interface port number for listening for mediARC GUI connections. Defaults to

"5767".

ServiceConsoleInterfaceAddress: The IP interface address for listening for ServiceConsole

connections (may be 0.0.0.0 to listen on any interface). Defaults to "0.0.0.0".

ServiceConsoleInterfacePort: The IP interface port number for listening for ServiceConsole

connections. Defaults to "5567".

DebugLogFile: A valid path and file name for debug messages to be written to (e.g. "C:

\DBDlogs\DBD.log"). If a file name is provided, debug messages will be written to this file. The

amount and detail of debug messages depends on the setting of DebugLogLevel. If the file

name is empty, no debug messages are written. Specifying a debug log file is recommended for

debugging and problem analysis only. During normal operation, debug messages should be

disabled. Writing a debug file may produce significant amounts of data and may have an impact

on application or system performance. It is recommended to watch storage resources when

writing a debug log file. A local path is preferred over a server share to guarantee file access.

Default value: none.

DebugLogLevel: The level of detail for debug messages (on a scale from 1 to 5, where 5

represents the most detailed logging). A high level can result in a significant amount of data

written. Debug levels should be used with care and debugging should be switched off when not

needed. A general shortage in storage resources may influence system performance and

stability. Default value: "3".

Debug levels are:

"1" error messages

"2" warning messages

"3" normal messages

"4" info messages

"5" debug messages

Login Data Tab

LicenseServer: The Hostname or IP address of the LicenseServer. Defaults to "localhost".

LicensePort: IP port of the LicenseServer. Defaults to "5557".

39

Runtime Environment

 Copyright © 2021 NOA GmbH

5.3.3 Log Window

The Log Window does allow real time observation of DBDistributor activity.

DBDistributor Log Window

The menu items of the Log Window allow access to following functions:

Server

· Listen (CTRL+L): enables listening to new client connections (new clients will be able to log in

to mediARC).

· Close (CTRL+O): disables listening to new client connections (new clients will not be able to

log in to mediARC but old clients will not be disconnected).

Show

· Connection List: brings forward the main DBDistributor window.

· Ini data dialog: opens the Init Data window described above.

Debug

· LicenseServer login: tries to log into the LicenseServer as defined in the Login Data tab of the

Init Data window and reports the result in the console.

· Enable Encryption: Debugging features for developers. Not relevant for customers.

· Client List: displays inside the console the current status of DBDistributor, the count of

currently logged on clients, their IP addresses and Alias of the database they are connected to.

· Test BG Extension: Debugging features for developers. Not relevant for customers.

mediARC Client Applications

41

Runtime Environment

 Copyright © 2021 NOA GmbH

6 mediARC Client Applications

mediARC offers two native client applications for users and administrators to access the

mediARC system.

 mediARC GUI The full client application that is installed on a local Windows PC.

 mediARC WEB A browser based intranet client application with limited features.

mediARC GUI6.1

The mediARC GUI client is the main interface for users and administrators to access the mediARC

system.

Designed with the skilled archivist in mind, the mediARC GUI is a Windows client application

with a graphical user interface (GUI) to access and work in the mediARC Archive Asset

Management system. The mediARC GUI is the starting point for creating and describing archive

objects, modeling and managing workflows, and researching assets within the mediARC

database. mediARC is a client-server application used to build an OAIS conform audio and

video archive. Media as well as metadata can be managed in mediARC, while workflows handle

all archive transactions. The access to the catalogue and archive is carried out via the mediARC

GUI within the intranet of an institution.

Each GUI client connects via DBDistributor to the mediARC database.

mediARC GUI connects to the mediARC Database via DBDistributor

For further information, please refer to the mediARC GUI documentation:

· for more details regarding operation topics, please consult the mediARC User

Manual.

42

Runtime Environment

 Copyright © 2021 NOA GmbH

· for administrative topics, please consult available mediARC administrator

documentation.

mediARC WEB6.2

The mediARC WEB allows users to access the mediARC system via a web browser interface.

mediARC WEB is the intranet web version of the mediARC GUI, which gives a limited set of

functionality including search, item details, media prelisten/preview and user orders. It is laid

down as a PHP application and may run on different web server operating systems.

mediARC WEB connects directly to the mediARC database.

User Access via mediARC WEB

For further information, please refer to the mediARC WEB documentation.

mediARC API (MAPI)

44

Runtime Environment

 Copyright © 2021 NOA GmbH

7 mediARC API (MAPI)

The mediARC API is a PL/SQL package that provides an API access to the mediARC system. It is

designed to be accessed via Oracle database connections or by http via a Web Server.

Note that a separate license is required to gain access to the mediARC API.

For further information, please refer to the mediARC API documentation.

ProcessorHost (PH)

46

Runtime Environment

 Copyright © 2021 NOA GmbH

8 ProcessorHost (PH)

Overview8.1

ProcessorHost is used as a high-level interface between processors (e.g. ingest applications) and

the database. This isolation layer between the database and the processors introduces a client-

server scenario, resolving the client requests on a dedicated logical communication layer

towards the database.

In a mediARC environment the ProcessorHost needs to run on a separate Windows server,

usually in combination with the LicenseServer and the DBDistributor.

As a server, ProcessorHost allows the processor applications to access the mediARC

database using high-level NoaComm remote procedure calls, reducing the

communication need and providing a layer of compatibility between different database

versions.

ingestLine And actLINE Processors Connect Over ProcessorHost To

mediARC Database

47

Runtime Environment

 Copyright © 2021 NOA GmbH

ProcessorHost is existing for jobDB or mediARC environment, thus encapsulating the

processor applications from their current environment system. This allows customers to

smoothly upgrade from jobDB to mediARC with no big difference on the client side.

mediARC ProcessorHost

Following buttons are available:

 Change Ini-Data: Shows the application wide settings window.

 Show Garbage Collector: Shows the Garbage Collector window.

 Show User Sync: Shows the UserSync window.

Note that under normal conditions, ProcessorHost will be executed as a Windows

service. On occasions, it is possible to run ProcessorHost as an executable program.

Please make sure to stop the service before running the executable.

Besides facilitating a connection to the mediARC database, the ProcessorHost also takes care of

the following:

· centralizing all client logs by writing the processor log files for all clients into one specific

location

· managing the system's central storage (see General Public Path)

· purging files on the General Public Path after a certain time out (see GarbageCollector).

48

Runtime Environment

 Copyright © 2021 NOA GmbH

Warning: Stopping the ProcessorHost causes all related programs and processes to stop

working! Please refer to the mediARC Startup and Shutdown Sequence chapter to

plan this step accordingly...

Installation8.2

To install or reinstall the ProcessorHost, simply run the installer and follow the instructions.

During installation you can decide whether you want to install ProcessorHost as a service or as

an application (or both).

After the installation is complete, have a look at the history file, which is installed with the

application, for changes.

Prerequisites

· ProcessorHost needs a pre-installed OracleClient (32-bit version) pointing to the right

database schema.

· Because ProcessorHost connects to LicenseServer it is necessary to install and start

LicenseServer before running ProcessorHost.

· It is recommended to install some HTTP web server (e.g. Microsoft IIS) to allow users browsing

the HTML log files.

Note that in 64-bit versions of Windows, the ProcessorHost needs to be installed in a

directory whose full path does not contain special characters (e.g. C:\NOA\) and not in

the default directory "C:\Program Files (x86)\NOA\" because the brackets "(" and ")" will

break the connection!

Configuration8.3

The configuration data of ProcessorHost is stored in the Windows registry, thus it is

available for the service as well as for the application. Please take care which Windows

user account you use when configuring the application as the settings will be available

only for this user account. This is important when running the service version later on

because the service must then be configured to use the same user account which was

used during the application configuration step.

The registry entries can be found in HKEY_CURRENT_USER\Software\NOA\MedPrcHost.

8.3.1 Init Data Window

There are some application-wide settings that can be found either using the Change Ini Data

button or remotely by using the ServiceConsole.

49

Runtime Environment

 Copyright © 2021 NOA GmbH

mediARC ProcessorHost Init Data Window

The following Init Data settings are used by the ProcessorHost:

Defaul Tab

ServerAddress: The IP interface address for listening for processor application connections. The

special value "0.0.0.0" may be used to listen on all available interfaces. Defaults to "0.0.0.0".

ServerPort: The IP interface port number for listening for processor application connections.

Defaults to "5787".

ServiceConsoleInterfaceAddress: The IP interface address for listening for ServiceConsole

connections. The special value "0.0.0.0" may be used to listen on all available interfaces. Defaults

to "0.0.0.0".

ServiceConsoleInterfacePort: The IP interface port number for listening for ServiceConsole

connections. Defaults to "5587".

WebInterfaceAddress: The IP address for web connections (Flow Logs etc.).

WebInterfacePort: The IP port number for web connections.

AccessDomain: The Access Domain ID in which ProcessorHost is running. For running systems

the number can be found in the Oracle database (SELECT * FROM AccessDomain).

GeneralPublicPathMaxAge: The timeout for unlinked files on the General Public Path (in days).

If the timeout value is zero, the clean-up of unlinked files is disabled. Defaults to "0" (disabled).

See GarbageCollector.

FlowLogMaxAge: The timeout for old log files in the flow log path (in days). If the timeout

value is zero, the clean-up of old log files is disabled. Defaults to "120".

UserSyncInterval: The timeout for performing user synchronization lookups (in minutes).

Defaults to "0" (disabled). See UserSync.

ServiceStartupCmd: The command that is executed when running as a service (e.g. a startup

script). Leave blank if not used.

Database Tab

50

Runtime Environment

 Copyright © 2021 NOA GmbH

DBServer: The TNS Alias of the Oracle database connection.

DBUsername: Login credentials for the database server.

DBPassword: Login credentials for the database server.

Login Data Tab

LicenseServer: The hostname or IP address of the LicenseServer connection. Defaults to

"localhost".

LicensePort: The IP port of the LicenseServer connection. Defaults to "5557".

Debug Tab

DebugLogFile: A valid path and file name for debug messages to be written to (e.g. "C:

\PHlogs\PH.log"). If a file name is provided, debug messages will be written to this file. A new

log file is started automatically by ProcessorHost if the existing log file exceeds a size limit

(currently 20MB). The amount and detail of debug messages depends on the setting of

DebugLogLevel. If the file name is empty, no debug messages are written. Specifying a debug

log file is recommended for debugging and problem analysis only. During normal operation,

debug messages should be disabled. Writing a debug file may produce significant amounts of

data and may have an impact on application or system performance. It is recommended to

watch storage resources when writing a debug log file. A local path is preferred over a server

share to guarantee file access. Default value: none.

DebugLogLevel: The level of detail for debug messages (on a scale from 1 to 5, where 5

represents the most detailed logging). A high level can result in a significant amount of data

written. Debug levels should be used with care and debugging should be switched off when not

needed. A general shortage in storage resources may influence system performance and

stability. Default value: "3".

TaskLogLevel: The level of detail for task log messages (on a scale from 1 to 5, where 5

represents the most detailed logging). Task logs document task execution and are handled

centralized through the ProcessorHost. Depending on the level, bare execution or even detailed

parameters used are logged. In contrast to debug logging, task logging is part of normal

operation. It is recommended to use a more detailed logging when changes are introduced to

the process. As soon as the changed process is running smooth, task logging may revert to a

medium or low detailed level. Default value: "3".

Debug levels are:

"1" error messages

"2" warning messages

"3" normal messages

"4" info messages

"5" debug messages

Note that not only flows and tasks produce log files. There are also log files from the

GarbageCollector in the ProcessorHost subfolder and from DBScripter's cyclic scripts in

the DBScripter subfolder. ProcessorHost will create subfolders within the log folder for

the different processor applications as necessary. The name of the log files is prefixed with

51

Runtime Environment

 Copyright © 2021 NOA GmbH

the date and time to allow sorting out and deleting old log files easily. Log files are

moved to a compressed zip-file by the GarbageCollector after a timeout (usually 120

days).

8.3.1.1 Task Log Configuration

The folder where the Task log files are stored by ProcessorHost can be configured in mediARC

GUI using the menu Administration | File Access.

The File Access Dialog In mediARC GUI

The two parameters Log Folder and Log View URL are part of the Access Domain, for which the

ProcessorHost is configured (see Init Data parameter AccessDomain above).

For backwards compatibility both parameters are read from the mediARC database if no access

domain specific values are set. The entries used in this case are:

LogFolder: The path for storing the Task log files. Defaults to "C:\NOA\FlowLogs\".

LogViewUrl: The URL for mediARC GUI clients to view the task log files. Defaults to

"file:///C:/NOA/FlowLogs/".

Note that when the value for Log Folder or Log View URL in the mediARC GUI is

changed, the ProcessorHost must be restarted for the changes to take effect!

To allow users to view the processor log files more easily, it is recommended to setup an

HTTP web server (e.g. Microsoft IIS) which is running on the same machine as

ProcessorHost or on any machine that has direct access to the log folder. The log view

52

Runtime Environment

 Copyright © 2021 NOA GmbH

URL is then configured in a way that a web browser can access the log files via the web

server using the specified URL (e.g. http://server/FlowLogs/).

8.3.2 Verify Connection

To see if the connection was successful and if the ProcessorHost is up and running, double click

the ProcessorHost icon in the windows tray. The main ProcessorHost window will appear, where,

after a fresh ProcessorHost start, you should be able to see entries like this :

 NOA ProcessorHost Version x.x.x (JobDB, Build #xx)
 Starting processor application interface...
 Starting service console interface...
 Server on <servername>:5587 started.
 Connected to database "<DBServername:DatabaseName>"
 DB Version is: xx
 Outputting Task- and FlowLog to: O:\Archive\Logs
 URL to view Task- and FlowLog is: file:///O:/Archive/Logs
 Server on <ServerName:Port> started.

If the last line states "Server on 'ServerName:Port' started", ProcessorHost started up without

problems and is now ready for use.

If not, read through the entries and fine out about the errors encountered during startup.

To see if an already running ProcessorHost is responsive, open the main ProcessorHost window

in the same way and see if there are new entries being logged. Even with no clients connected,

the ProcessorHost logs idle routines in cycles as well.

GarbageCollector8.4

Files which were created by processor applications on the General Public Path can be deleted

automatically (in cycles) by a process called Garbage Collection.

If the GeneralPublicPathMaxAge parameter in the Default tab of the Init Data window of

ProcessorHost is set to a number larger than 0, files which were created by processor

applications and are not linked to a workflow are deleted when their age exceeds the value

configured (files which were created by processor applications and linked to a workflow will be

deleted immediately when the time out for the parent workflow is reached).

The Garbage Collector window can be accessed using the Show Garbage Collector button

on the top panel of the ProcessorHost main window.

53

Runtime Environment

 Copyright © 2021 NOA GmbH

ProcessorHost Garbage Collector Window

The following buttons are available:

 Run Check Now: Runs the check immediately instead of waiting for the next scheduled run

cycle.

The drop down menu of the Run Check Now button additionally offers following options:

Check Now: Runs the check immediately instead of waiting for the next scheduled run cycle.

The default action (bold) that is triggered when the button is clicked.

Check Flow Logs: Runs a subset of the task and checks only old flow log files.

Disable Check Timer: Toggles on/off the timer that runs the checks in cycles on automatic

schedule.

Note that if the GeneralPublicPathMaxAge is set to zero, the Garbage Collection of

unlinked files is disabled completely.

54

Runtime Environment

 Copyright © 2021 NOA GmbH

User Synchronization8.5

The user synchronization process allows to synchronize users from external directory services

(Active Directory, LDAP) with the mediARC user base.

To allow automatic synchronization, the UserSyncInterval parameter of ProcessorHost needs to

be set to a meaningful value (e.g. 60 - 240 minutes). Also the target user Access Domains that

should be synced in mediARC need to be configured with access domain type "User" and there

needs to be at least one RemoteFileAgent:// access method defined from the System Domain

(where ProcessorHost is running) towards the User Domain.

If synchronization is enabled, the ProcessorHost will periodically connect to all the

RemoteFileAgents that are configured as Access Methods in the System Domain (that means a

RemoteFileAgent:// method is defined from System Domain to User Domain) and send a list of

all groups defined in mediARC to them periodically. RemoteFileAgents will then look-up users in

matching groups and return a list of user details. ProcessorHost will then compare the list of

returned users with the users found in the local database.

In ProcessorHost, the User Synchronization window can be accessed using the Show User Sync...

 button.

ProcessorHost User Sync Window

The UserSync window allows real time observation of ProcessorHost user synchronization

activity.

55

Runtime Environment

 Copyright © 2021 NOA GmbH

2021-03-09 14-53-10: Checking user access domains...
2021-03-09 14-53-10: 6 groups found in database
2021-03-09 14-53-10: 2 user categories found in database
2021-03-09 14-53-10: Syncing user access domain #50040 (<domain name>) ...
2021-03-09 14-53-10: connecting to RemoteFileAgent <hostname>:5791 ...
2021-03-09 14-53-10: connection established
2021-03-09 14-53-10: 14 users found in database

It is possible to trigger the synchronization procedure manually by clicking the Run Sync Now

.

If UserSyncInterval is set to zero, no automatic user synchronization is performed.

For more information on user synchronization, see the mediARC User Configuration

and Rights Management Administrator Manual.

FileManager (FM)

57

Runtime Environment

 Copyright © 2021 NOA GmbH

9 FileManager (FM)

Overview9.1

The FileManager moves files between different Access Domains, selecting the appropriate

access method, by using dedicated policies such as:

· File system based copy

· Connecting to RemoteFileAgent

· Connecting to StorageConnector

· Connecting to a FTP server

Whenever a file is asked from different Access Domains, the FileManager is tasked with

providing the requested files from/to the defined Access Domains. The FileManager represents

the link between mediARC's

· User Domains

· System Domain

· Archive Domain

These Access Domains are addressed by FileManager either directly or over RemoteFileAgent

and StorageConnector (interface application for FileManager to address specific storage

solutions).

58

Runtime Environment

 Copyright © 2021 NOA GmbH

File Delivery by FileManager

The following buttons are available:

 Change Init-Data: Shows the application wide settings window.

 Show Processors: Shows the instances of FileManager in separate windows (see the

FileManager Instances chapter).

The drop down menu of the Show Processors button additionally offers following

options:

· Auto Load: FileManager will load tasks automatically if enabled.

· OnlyReserved: FileManager will only load reserved tasks if enabled.

Note that under normal conditions, FileManager will be executed as a Windows service.

On occasions, it is possible to run FileManager as an executable program. Please make

sure to stop the service before running the executable.

Installation9.2

To install or reinstall the FileManager, simply run the installer and follow the instructions.

During installation you can decide whether you want to install FileManager as a service or as an

application (or both).

After the installation is complete, have a look at the history file, which is installed with the

application, for changes.

59

Runtime Environment

 Copyright © 2021 NOA GmbH

Configuration9.3

The configuration data of FileManager is stored in the Windows registry, thus it is

available for the service as well as for the application. Please take care which Windows

user account you use when configuring the application as the settings will be available

only for this user account. This is important when running the service version later on

because the service must then be configured to use the same user account which was

used during the application configuration step.

The registry entries can be found in

HKEY_CURRENT_USER\SOFTWARE\NOA\FileManager.

9.3.1 Init Data Window

There are some application-wide settings that can be found either using the Change Ini-Data

button or remotely by using the ServiceConsole.

mediARC FileManager Init Data Window

The following Init Data settings are used by the FileManager:

Default Tab

ServiceConsoleInterfaceAddress: The IP interface address for listening for service console

connections (may be 0.0.0.0 to listen on any interface). Defaults to "0.0.0.0".

ServiceConsoleInterfacePort: The IP interface port number for listening for service console

connections. Defaults to "5597".

Login Data Tab

ProcessorHost: The IP address of the ProcessorHost.

ProcessorPort: The IP port of the ProcessorHost.

Debug Tab

60

Runtime Environment

 Copyright © 2021 NOA GmbH

DebugLogFile: A valid path and file name for debug messages to be written to (e.g. "C:

\FMlogs\FM.log"). If a file name is provided, debug messages will be written to this file. The

amount and detail of debug messages depends on the setting of DebugLogLevel. If the file

name is empty, no debug messages are written. Specifying a debug log file is recommended for

debugging and problem analysis only. During normal operation, debug messages should be

disabled. Writing a debug file may produce significant amounts of data and may have an impact

on application or system performance. It is recommended to watch storage resources when

writing a debug log file. A local path is preferred over a server share to guarantee file access.

Default value: none.

DebugLogLevel: The level of detail for debug messages (on a scale from 1 to 5, where 5

represents the most detailed logging). A high level can result in a significant amount of data

written. Debug levels should be used with care and debugging should be switched off when not

needed. A general shortage in storage resources may influence system performance and

stability. Default value: "3".

TaskLogLevel: The level of detail for task log messages (on a scale from 1 to 5, where 5

represents the most detailed logging). Task logs document task execution and are handled

centralized through the ProcessorHost. Depending on the level, bare execution or even detailed

parameters used are logged. In contrast to debug logging, task logging is part of normal

operation. It is recommended to use a more detailed logging when changes are introduced to

the process. As soon as the changed process is running smooth, task logging may revert to a

medium or low detailed level. Default value: "3".

Debug levels are:

"1" error messages

"2" warning messages

"3" normal messages

"4" info messages

"5" debug messages

9.3.2 mediARC File Access

Note that Access Methods and Paths that are required by the FileManager need to be defined in

mediARC GUI using the menu Administration | File Access.

For further information about File Access configuration in mediARC, please refer to the

mediARC Domains TechNote or the mediARC User Configuration and Rights

Management Administrator Manual.

61

Runtime Environment

 Copyright © 2021 NOA GmbH

FileManager Instances9.4

FileManager can be multi-instanced. When running FileManager as a GUI application, each

instance can be opened as a single processor window by clicking the Show Processors button in

the FileManager main window.

FileManager Single Processor Window

FileManager Tasks can be loaded manually or automatically, and a Processor can be configured

to only load reserved Tasks.

For further information about Processors, please refer to the mediARC Computers and

Processors TechNote.

RemoteFileAgent (RFA)

63

Runtime Environment

 Copyright © 2021 NOA GmbH

10 RemoteFileAgent (RFA)

Overview10.1

RemoteFileAgent is used on target side by FileManager to securely transfer files from the system

to the user in his User Domain and to control the file access rights of the requesting user within

an Active Directory.

If desired the RemoteFileAgent can monitor the Prelisten Cache and/or the users private

paths and delete old files if necessary.

In a mediARC environment the RemoteFileAgent needs to run on a Windows server in a User

Access Domain, usually in combination with the WebPreviewServer (to manage the Prelisten

Cache) or other mediARC processors.

Access Domains Of mediARC

Transfer of files is managed over NoaComm which uses blocklevel based checksums to

guarantee a safe delivery of even large files. Typically one RemoteFileAgent per User Domain is

used. A user access domain can be a local network within the premises of the running mediARC

system, or a distant network, such as a regional station or a mobile laptop.

64

Runtime Environment

 Copyright © 2021 NOA GmbH

mediARC RemoteFileAgent

Following buttons are available:

 Change Ini Data: Shows the application wide settings window.

 Show Folder Monitor: Shows the folder monitor window.

 Show Access Monitor: Shows the access monitor window.

Note that under normal conditions, RemoteFileAgent will be executed as a Windows

service. On occasions, it is possible to run RemoteFileAgent as an executable program.

Please make sure to stop the service before running the executable.

Note that RemoteFileAgent does not have a LicenseServer connection, which is why it

can be turned on and off anytime without influencing other mediARC modules.

Installation10.2

To install or reinstall the RemoteFileAgent, simply run the installer and follow the instructions.

During installation you can decide whether you want to install RemoteFileAgent as a service or

as an application (or both).

After the installation is complete, have a look at the history file, which is installed with the

application, for changes.

Configuration10.3

The configuration data of RemoteFileAgent is stored in the Windows registry, thus it is

available for the service as well as for the application. Please take care which Windows

user account you use when configuring the application as the settings will be available

only for this user account. This is important when running the service version later on

65

Runtime Environment

 Copyright © 2021 NOA GmbH

because the service must then be configured to use the same user account which was

used during the application configuration step.

The registry entries can be found in

HKEY_CURRENT_USER\SOFTWARE\NOA\RemoteFileAgent.

10.3.1 Init Data Window

There are some application-wide settings that can be found either using the Change Ini Data

button or remotely by using the ServiceConsole.

RemoteFileAgent Init Data Window

The following Init Data settings are used by the RemoteFileAgent:

Default Tab

ServerAddress: The IP interface address for listening to connections (may be 0.0.0.0 to listen on

any interface). Defaults to "0.0.0.0".

ServerPort: The IP interface port number for listening to connections. Defaults to "5791".

ServiceConsoleInterfaceAddress: The IP interface address for listening for ServiceConsole

connections (may be 0.0.0.0 to listen on any interface). Defaults to "0.0.0.0".

ServiceConsoleInterfacePort: The IP interface port number for listening for ServiceConsole

connections. Defaults to "5591".

DataRateRx: The average data rate for receiving data from a remote location. Disabled if rate is

0.

DataRateTx: The average data rate for sending data to a remote location. Disabled if rate is 0.

DebugLogFile: A valid path and file name for debug messages to be written to (e.g. "C:

\RFAlogs\RFA.log"). If a file name is provided, debug messages will be written to this file. The

66

Runtime Environment

 Copyright © 2021 NOA GmbH

amount and detail of debug messages depends on the setting of DebugLogLevel. If the file

name is empty, no debug messages are written. Specifying a debug log file is recommended for

debugging and problem analysis only. During normal operation, debug messages should be

disabled. Writing a debug file may produce significant amounts of data and may have an impact

on application or system performance. It is recommended to watch storage resources when

writing a debug log file. A local path is preferred over a server share to guarantee file access.

Default value: none.

DebugLogLevel: The level of detail for debug messages (on a scale from 1 to 5, where 5

represents the most detailed logging). A high level can result in a significant amount of data

written. Debug levels should be used with care and debugging should be switched off when not

needed. A general shortage in storage resources may influence system performance and

stability. Default value: "3".

Debug levels are:

"1" error messages

"2" warning messages

"3" normal messages

"4" info messages

"5" debug messages

Folder Monitor Tab

Note that the RemoteFileAgent receives its files depending on the folder settings which

are set up in the mediARC file access dialog (Administration | File Access in mediARC

GUI), and the local settings for prelisten directories are only used to monitor the size of

the directories!

PrelistenDirs: Comma-separated list of directories which shall be scanned for file size and age

limits. These directories are not filled by the FileManager, but only monitored by the

RemoteFileAgent.

PrelistenMaxFileAge: Number of days for which the files should be preserved. Files older than

the defined number of days will be deleted by the RemoteFileAgent. Defaults to "0".

PrelistenMaxDirSize: Maximum of disk usage (in megabytes). Defaults to "0".

PrelistenMinDiskFree: Minimum left free disk space (in megabytes). Defaults to "0".

PrivateDirs: Comma-separated list of directories which shall be scanned for file size and age

limits. These directories are not filled by FileManager, but only monitored by RemoteFileAgent.

PrivateMaxFileAge: Number of days for which the files should be preserved. Files older than the

defined number of days will be deleted by the RemoteFileAgent. Defaults to "0".

PrivateMaxDirSize: Maximum of disk usage (in megabytes). Defaults to "0".

PrivateMinDiskFree: Minimum left free disk space (in megabytes). Defaults to "0".

Access Dialog Tab

EnableAccessUpdate: Enables automatic update of file access rights.

DefaultAccessTimeout: The default value for providing access rights (in hours). Defaults to "1".

67

Runtime Environment

 Copyright © 2021 NOA GmbH

User Lookup Tab

EnableUserLookup: Enables response to user lookup requests as used by the ProcessorHost user

synchronization. For more information see the ProcessorHost chapter User Synchronization.

UseHashedSid: Forces user lookup to hash SID values and use an internal hash mapping

database.

GroupNamePrefix: Prefix used for mediARC groups within Active Directory (may be quoted if

containing spaces).

UserCategoryPrefix: Prefix used for mediARC user categories within Active Directory (may be

quoted if containing spaces)

IncludeDomainPrefix: Include domain name as a prefix for returned user names.

10.3.2 mediARC File Access

Note that Access Methods and Paths that are required by the FileManager need to be defined in

mediARC GUI using the menu Administration | File Access.

For further information about File Access configuration in mediARC, please refer to the

mediARC Domains TechNote or the mediARC User Configuration and Rights

Management Administrator Manual.

10.3.3 Folder Monitor

If desired the RemoteFileAgent can monitor the Prelisten Cache and/or the users' Private

Folders and delete old files if necessary. Each of these directory lists can use three triggers to

delete unused files:

· MaxFileAge: deletes files that are older than the specified number of days.

· MaxDirSize: deletes the oldest files until the total size of files in the directory list is below the

size limit.

· MinDiskFree: deletes the oldest files until the free disk space of the drives in the directory list

is above the limit.

Warning: if a trigger is not used it must be set to zero! By default no triggers are used.

The directories to monitor are set by the 'PrelistenDirs' and 'PrivateDirs' configuration properties

in the RemoteFileAgent's Init Data Window.

68

Runtime Environment

 Copyright © 2021 NOA GmbH

RemoteFileAgent Folder Monitor Window

The following buttons are available:

 Refresh File List: Refreshes the current view.

 Check Folder Limits: Runs the check immediately instead of waiting for the next scheduled

run cycle.

The drop down menu of the Check Folder Limits button additionally offers following

options:

Check Now: Runs the check immediately instead of waiting for the next scheduled run

cycle. The default action (bold) that is triggered when the button is clicked.

Simulate Delete: When manually running a folder check, the oldest files in the Prelisten /

Private folders will be deleted depending on the rules specified in the Init Data settings.

When "Simulate Delete" is enabled, the affected files are just listed instead of actually

removed from disk.

Disable Timer: Toggles on/off the timer that runs the checks in cycles on automatic

schedule.

69

Runtime Environment

 Copyright © 2021 NOA GmbH

10.3.4 Access Monitor

The Access Monitor window allows to monitor file access rights assigned to files in the Prelisten

Cache, for debugging purposes.

Whenever a user clicks on the prelisten / preview button in the mediARC GUI, the application

tries to read the file from the Prelisten Cache which is located in the User Domain of the

requesting user. If the file is not online, the Prelisten Flow is used by mediARC to provide the

file from the source (the mediARC GUI does not read the audio file directly from the archive as it

will typically not have direct access to the archive).

In the last step of the Prelisten Flow, FileManager will read the file from the archive and pass it to

the RemoteFileAgent running in the local network of the user that triggered the prelisten

request. The RemoteFileAgent retrieves the file from the FileManager and stores it to the

Prelisten Cache. Finally it ensures that the requesting user has proper access rights to read the file

(as users do not have access to all of the files in the Prelisten Cache but only to the ones they

have recently requested).

The RemoteFileAgent will remove the rights after the timeout defined in the

DefaultAccessTimeout in the Folder Monitor tab of the RFA's Init Data settings.

RemoteFileAgent Access Monitor Window

70

Runtime Environment

 Copyright © 2021 NOA GmbH

The following buttons are available:

 Check Access Timeouts: Runs the check for expired access rights immediately instead of

waiting for the next scheduled run cycle.

A simple user name / SID translator is available to help the debugging process:

· SidToUser: translates the given SID ID to a user name.

· UserToSid: translates the given user name to a SID ID.

WebPreviewServer (WPS)

72

Runtime Environment

 Copyright © 2021 NOA GmbH

11 WebPreviewServer (WPS)

Overview11.1

WebPreviewServer acts as a streaming server for prelisten/preview requests from the mediARC

WEB client application. It serves media files to the player on the client machine using the HTTP

protocol for maximum compatibility. WebPreviewServer uses the Prelisten Cache of the

mediARC system for reading media files.

In a mediARC environment the WebPreviewServer is usually located on the same machine as

RemoteFileAgent, which manages the Prelisten Cache (if an Oracle Client is available there).

The base URL is http://<server>:<port>/prelisten/
e.g. http://noa-wps:5799/prelisten)

WebPreviewServer restricts access to media data for prelistening/previewing by limiting

the playable file range and the time the file URL is available. The application also

automatically adapts the download bitrate of media files to allow a maximum of

concurrent users.

WebPreviewServer used for Web Preview

73

Runtime Environment

 Copyright © 2021 NOA GmbH

mediARC WebPreviewServer Window

The following buttons are available:

 Change Init-Data: Shows the application wide settings window.

Installation11.2

To install or reinstall the WebPreviewServer, simply run the installer and follow the instructions.

During installation you can decide whether you want to install WebPreviewServer as a service or

as an application (or both).

After the installation is complete, have a look at the history file, which is installed with the

application, for changes.

Prerequisites

· WebPreviewServer needs a pre-installed OracleClient (32-bit version) pointing to the right

database schema.

74

Runtime Environment

 Copyright © 2021 NOA GmbH

· Upon the first start of the application at least the database connection settings need to be

configured (TNS Alias, username, password).

Note that in 64-bit versions of Windows, the WebPreviewServer needs to be installed in

a directory whose full path does not contain special characters (e.g. C:\NOA\) and not in

the default directory "C:\Program Files (x86)\NOA\" because the brackets "(" and ")" will

break the connection!

Configuration11.3

The configuration data of WebPreviewServer is stored in the Windows registry, thus it is

available for the service as well as for the application. Please take care which Windows

user account you use when configuring the application as the settings will be available

only for this user account. This is important when running the service version later on

because the service must then be configured to use the same user account which was

used during the application configuration step.

The registry entries can be found in

HKEY_CURRENT_USER\SOFTWARE\NOA\WebPreviewServer.

11.3.1 Init Data Window

There are some application-wide settings that can be found either using the Change Ini Data

button or remotely by using the ServiceConsole.

WebPreviewServer Init Data Window

75

Runtime Environment

 Copyright © 2021 NOA GmbH

The following Init Data settings are used by the WebPreviewServer:

Defaul Tab

ServerAddress: The IP interface address for listening for prelisten request connections. The

special value "0.0.0.0" may be used to listen on all available interfaces. Defaults to "0.0.0.0".

ServerPort: The IP interface port number for listening for prelisten request connections. Defaults

to "5799".

DebugLogFile: A valid path and file name for debug messages to be written to (e.g. "C:

\WPSlogs\WPS.log"). If a file name is provided, debug messages will be written to this file. The

amount and detail of debug messages depends on the setting of DebugLogLevel. If the file

name is empty, no debug messages are written. Specifying a debug log file is recommended for

debugging and problem analysis only. During normal operation, debug messages should be

disabled. Writing a debug file may produce significant amounts of data and may have an impact

on application or system performance. It is recommended to watch storage resources when

writing a debug log file. A local path is preferred over a server share to guarantee file access.

Default value: none.

DebugLogLevel: The level of detail for debug messages (on a scale from 1 to 5, where 5

represents the most detailed logging). A high level can result in a significant amount of data

written. Debug levels should be used with care and debugging should be switched off when not

needed. A general shortage in storage resources may influence system performance and

stability. Default value: "3".

Debug levels are:

"1" error messages

"2" warning messages

"3" normal messages

"4" info messages

"5" debug messages

AccessDomain: The Access Domain ID in which WebPreviewServer is running, to determine the

Prelisten Cache. If "0" (the default) then the Access Domain of the User ID is used.

User: User ID which is used for prelisten requests. If "0" (the default) the user ID is determined

by the Windows user running the application.

RequestMaxAge: The timeout for old prelisten requests in the database (in days). Defaults to

"120" days.

AllowExtendedFileLookup: Allows file lookup to be performed on all reachable paths instead

of limiting lookup to the Prelisten Cache (might slow down the server depending on throughput

and latency of those paths). Defaults to "false".

Database Tab

DBServer: The TNS Alias of the Oracle database connection.

DBUsername: Login credentials for the database server.

DBPassword: Login credentials for the database server.

76

Runtime Environment

 Copyright © 2021 NOA GmbH

Bandwidth Tab

BandwidthBitrateScale: The scale factor for determining the media streaming rate. The

streaming rate is calculated by multiplying the actual file bitrate with the scale factor. Useful

values for the scale factor are values between 1.2 and 5.0. The default value "0" employs a hard-

coded scale > 1, allowing the client to maintain buffers with low burst rates.

BandwidthMinRate: The minimum rate for media streaming in kilobytes per second. If set to

"0", a default value of 32 kbps is used.

BandwidthMaxRate: The maximum rate for media streaming in kilobytes per second. The

default value "0" provides unlimited bandwidth.

Note that you can also change the bandwidth settings in the Windows registry:

HKEY_CURRENT_USER\Software\NOA\WebPreviewServer\bandwidth

All settings are efficient per stream. Nominal yields given by BandwidthBitrateScale

may be limited by BandwidthMinRate and BandwidthMaxRate at the upper/lower

threshold.

11.3.2 Prelisten Cache

WebPreviewServer uses the Prelisten Cache for reading in media files. In a basic setup, it is

recommended that the WebPreviewServer is run under the Windows account for NOA processor

applications (i.e. "noa-auto") and that a Prelisten Cache is configured for the User Domain (see

Administration | File Access in mediARC GUI).

If a file is not available in the Prelisten Cache, a Prelisten Flow is started.

For details on the prelisten mechanism have a look at Prelisten Flow.

77

Runtime Environment

 Copyright © 2021 NOA GmbH

Database Configuration

The Oracle stored procedure/function InitWebPrelisten() is responsible for passing

prelisten/preview requests from mediARC WEB clients to the WebPreviewServer. Current versions

of InitWebPrelisten() function look-up the matching WebPreviewServer using the defined access

methods between user domain and file archive domain. For example, to configure

WebPreviewServer on host "noa-wps" for providing prelisten files stored in the archive domain

"Archive" to users of the "Web Users" access domain, one will define an access method with the

value "WebPreviewServer://noa-wps/" on "Web Users".

The InitWebPrelisten() function also contains a base URL which is used if no matching access

method could be found. This URL string should be configured upon a first-time installation on

Oracle database side. It will use the hostname of the machine WebPreviewServer is installed on

and the port for prelisten requests as specified above to form the base URL:

http://<server>:<port>/prelisten/

The base URL for the upper example with WebPreviewServer running on host "noa-wps" is:

http://noa-wps:5799/prelisten/.

Note that older versions of the InitWebPrelisten() function do not support configuration

using Access Methods and it is necessary to define the base URL manually when

adding/changing the WebPreviewServer hosts.

For further information, please refer to the mediARC Workflows documentation.

Status Information11.4

The WebPreviewServer allows mediARC administrators to monitor the status of the application

through a special "admin page" available on the following URL:

http://<server>:<port>/admin/

On the machine where the WebPreviewServer application is installed this URL resolves to

"http://localhost:5799/admin/" (be careful to include the last "/").

Access to the admin status page is granted to all mediARC users who own the

"Flow.Admin" key.

The following information is available in the admin menu:

App Info: The general information about the WebPreviewServer, including Version, Startup

Time, Database Connection Information, Prelisten Cache Paths etc.

78

Runtime Environment

 Copyright © 2021 NOA GmbH

I/O Info: The general information about hardware and network resources, incl. CPU, Memory,

Client Count, Throughput etc.

Prelisten Req List: A comprehensive list of all prelisten requests incl. File Name, Media Source

Name, Request Date, Client Address etc.

Attachment Req List: A comprehensive list of all attachment requests incl. File Name, Request

Date, Client Address etc.

Client List: The list of all currently connected clients.

ServiceConsole (SC)

80

Runtime Environment

 Copyright © 2021 NOA GmbH

12 ServiceConsole (SC)

Overview12.1

The ServiceConsole is part of the actLINE product family and it can be used to pause, resume,

monitor and configure nearly all NOA service applications.

By default, the ServiceConsole will query the LicenseServer for active Processor Services and

display the instance in the connection tree, including the LicenseServer itself. Manual

configuration is only required for Services that have no connection to the LicenseServer (e.g.

RemoteFileAgent). See list of supported Services below. Another case where connections need

to be set manually is if the ServiceConsole is running in a different network than the

LicenseServer.

The ServiceConsole Main Window

The following buttons are available:

 Connect To Service: Connects to the currently selected Service.

 Pause Service: The Service releases most of it's resources (like the ProcessorHost

connection). The Service finishes it's currently loaded tasks before going into pause state

so it might take some time until the pause state is entered.

 Continue Service: The Service starts up and resumes normal operations.

 Show Ini Dialog: A dialog is shown to configure the Init Data of the Service. Note that

most of the settings will not take effect until the Service is paused/continued or restarted.

 View Debug Log: If available, the debug log of the Service application is displayed.

81

Runtime Environment

 Copyright © 2021 NOA GmbH

The same functions are also available from the contextual menu after right-clicking a host in the

NOA Services list.

The following menu items are available:

· Edit | Settings: Shows the application wide Settings window.

· Edit | Update Service List F5: Refreshes the list of available services.

The following Services are supported:

· Clip

· DBDistributor

· DBScripter

· Emailer

· FileCollector

· FileManager

· FolderScanner

· LicenseServer

· MediaButler

· ProcessorHost

· RemoteFileAgent

· StorageConnector

· WaveButler

12.1.1 Adding Services Manually

It is possible to add available Services in the NOA Services list manually. To do this, right-click on

the appropriate service type icon or the ‘NOA Services’ root label in the tree view and choose

Add Registration.

The Registration Edit Dialog Window

82

Runtime Environment

 Copyright © 2021 NOA GmbH

A small Registration Edit Dialog window will appear where the required custom settings can be

defined.

The following information needs to be provided:

· Registration Name: the name of the Service connection that will be displayed in the list.

· Service Type: the type of Service chosen from a dropdown list of supported Services.

· Server Name: the IP address of the ServiceConsole interface on which the Service is listening

for connection requests.

· Server Port: the IP port of the ServiceConsole interface on which the Service is listening for

connection requests (see chapter mediARC Network Ports).

o use the Default button to reset the port number to the application's default value

· Authentication: If the current Windows user account is within the LicenseServer's Windows

domain, the authentication field can be left empty. Else, enter an authentication string (see

chapter User Authentication).

· Console Type: specifies whether the service application supports remote forms (e.g. the

processor applications FolderScanner, FileCollector and WaveScanner) or not (most other

applications). Usually it is a safe choice to leave the setting at "unknown" until experiencing

problems.

12.1.2 Editing Services Manually

It is possible to change or delete available Services in the NOA Services list. To do this, select an

existing Service connection in the list, right-click it and select:

· Edit Registration...: displays the Registration Edit Dialog window, which allows the user to

edit:

o the Registration Name for automatically added Service connections

o the Registration Name, Service Type, Server Name, Server Port, Authentication and

Console Type for manually added Service connections

· Delete Registration: deletes the selected Service connection from the list (no confirmation

dialog).

Installation12.2

To install or reinstall the ServiceConsole, simply run the installer and follow the instructions.

During installation you can decide whether you want to install the ServiceConsole as a service or

as an application (or both).

After the installation is complete, have a look at the history file, which is installed with the

application, for changes.

Prerequisites

· The LicenseServer needs to have the NTServer setting in the Init Data window configured.

83

Runtime Environment

 Copyright © 2021 NOA GmbH

Configuration12.3

The configuration data of the ServiceConsole is stored in the 'NoaServiceConsole.ini' text

file in the ServiceConsole installation directory.

12.3.1 Settings Window

There are some application-wide settings that can be found using the Edit | Settings... menu in

the main window.

The Settings Window of the ServiceConsole

The following settings are used by the ServiceConsole:

LicenseServer: The Hostname / IP address and the Port number of the LicenseServer. Defaults to

"localhost" and "5557" respectively.

· use the Test button to test the connection to the LicenseServer.

Authentication: The optional user authentication string used to get access rights from the

LicenseServer. If empty, the local user account running the ServiceConsole will be used.

· use the Rights button to calculate effective rights of both the local user account running the

ServiceConsole and the explicit user authentication string given.

Resolve IP Address: By default this setting is set to disabled and the machines running the

Services are listed using only their IP addresses. Other options are:

· hostname: the IP is resolved to its <host name>.

· full qualified name: the IP is resolved to its <host name>.<domain name>

Note: Depending on your network structure resolving hostnames might lead to

application timeouts. If you encounter timeout problems upon application startup you

should disable this configuration option.

Enable Script Debugging: Shows a menu entry that displays messages from the procedure that

loads an application window. These messages can be used by developers of remote applications

to debug problematic behavior.

84

Runtime Environment

 Copyright © 2021 NOA GmbH

Enable RemoteForm Debug Output: Allows the developer of a remote form (see above) to verify
what form data is received by the ServiceConsole. The ServiceConsole will write the form data into a
file "Debug_RemoteForm.dfm" in the current folder.

12.3.2 User Authentication

The ServiceConsole does not use the default NOA user login and authentication method.

Therefore, in theory, any user can run it.

However, when the ServiceConsole requests a connection to a mediARC service or an actLINE

processor application, a certain level of user authentication does take place. This User Rights

Management (URM) is handled by the LicenseServer, which is either pooling user account

information from a Windows domain controller, or comparing locally defined user tokens (see

chapter Explicit Users).

For further information on how to configure user authentication for ServiceConsole users,

see chapter LicenseServer > Configuration.

In ServiceConsole, go to the Edit | Settings... menu, and enter the defined user token in the

Authentication field.

StorageConnector (STORCON)

86

Runtime Environment

 Copyright © 2021 NOA GmbH

13 StorageConnector (STORCON)

Overview13.1

The StorageConnector is part of the actLINE product family and it servers as a file access agent,

which provides access to archive storage for the rest of the system. The purpose of the

StorageConnector is acting as one point of entry for store or restore requests, isolating direct

access from normal users and managing access rights.

Typical use cases of the StorageConnector

StorageConnector may be contacted by the FileManager or the 'UpdateStorageTask' of

DBScripter. This method is using NoaComm protocol (NoaComm is a protocol definition that is

used to exchange information between two computers. It's based on only two long-lasting and

platform independent standards: TCP/IP and XML).

StorageConnector is able to run its own transactions on asynchronous protocols thus being

enabled interacting with Hierarchical Storage Management (HSM) or Storage Content

Management Systems (SCMS). Different file naming policies towards the storage can be

implemented, in order to cope with specific demands from the storage system itself (most

typically a limitation of maximum directory size in some NAS environments, or the maximum

number of folders per node on some systems).

Currently there are two StorageConnector versions available:

· StorageConnector UNC: A generic interface to CIFS shares, typically used in radio archive

environments or standard CIFS environments where a CIFS gateway exists.

· StorageConnector DIVA: A dedicated interface to ORACLE DIVA Archive, where Partial File

Index & Restore for FFV1 is fully supported. This allows for much faster retrieve and access

times when ordering short segments of video files. StorageConnector DIVA creates an index

within mediARC derived from the NOA archival format FFV1 (which is created by MediaButler).

This allows users to order segments from DIVA Tape Storage in a fraction of time, allowing for

lower bandwidth on network and higher performance of tape archival and retrieval tasks.

When using the StorageConnector DIVA, no additional PFR license is required for DIVA.

87

Runtime Environment

 Copyright © 2021 NOA GmbH

Note that the StorageConnector is normally being run as a Windows service, and while

there is a GUI version available, this is used only for debugging purposes (see chapter

StorageConnector GUI).

Installation13.2

Note that because StorageConnector is available in different versions, separate installers

are also available. Please make sure you are using the right one.

The following chapters describe "StorageConnectorFile" as an example, but the same

steps apply to other versions of StorageConnector as well.

To install or reinstall the StorageConnector, simply run the installer and follow the instructions.

During installation you can decide whether you want to install the StorageConnector as a service

or as an application (or both).

After the installation is complete, have a look at the history file, which is installed with the

application, for changes.

Prerequisites

· The machine needs to have network access to the archive storage.

· All running DBScripter instances should be turned off or made inactive via the ServiceConsole.

Warning: When performing an update of an already running installation of

StorageConnector, it is important to not overwrite the file TransDb.db3 (located in the

StorageConnector's installation folder), as it contains information about currently

running/scheduled transactions!

Configuration13.3

The configuration data of the StorageConnector is stored in:

· the 'Policy.ini' text file in the directory selected during the installation process (by

default C:\Noa\StorageConnector\PolicyFile\Policy.ini)

· the Windows registry under the following paths:

o 32-bit Windows: HKEY_LOCAL_MACHINE\SOFTWARE\NOA\StorageConnector\

o 64-bit Windows:

HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432node\NOA\StorageConnector\

Note that further configuration is also necessary in mediARC GUI, menu Administration |

File Access.

88

Runtime Environment

 Copyright © 2021 NOA GmbH

13.3.1 Policy File

Before running the StorageConnector, the Policy File 'Policy.ini' needs to be configured manually,

in a text editor (e.g. notepad.exe).

Warning: If no 'Policy.ini' file is available, the StorageConnector application or service

will not start!

The file is usually located in the directory selected during the installation process. The default

path is 'C:\Noa\StorageConnector\PolicyFile\Policy.ini'. The installer supplies also a 'Policy-

Example.ini' file in the same directory, to make the initial configuration much simpler (just edit

and save as / rename the file to 'Policy.ini').

Note that the syntax of the Policy File is different for each version of StorageConnector

(like StorageConnectorFile.exe or StorageConnectorDiva.exe)!

StorageConnector UNC:

[Policy:1]
; base path for storing files with policy "1"
Path1.Path=\\Server\mediARC\Archive\BWF\

[Policy:2]
; base path for storing files with policy "2", with a local Temp directory
defined
Path1.Path=\\Server\MediARC\Archive\MP3\
Path1.LocalTmpPath=C:\Noa\StorageConnector\LocalTmp\

[Policy:3]
; this policy uses multiple paths:
; when the first path has reached the given size, the next path is used
Path1.Path=X:\Archive1\
Path1.Size=100MB

Path2.Path=X:\Archive2\
Path2.Size=100MB

The following variables are used:

· PolicyID: For each Media Format that should be mounted to the archive, the PolicyID needs to

be linked to its Storage Properties (menu Catalog | Media Formats in mediARC GUI).

· Path#.Path: The exact path to the archive storage folder used for the given PolicyID. Both IP

address and Hostname are allowed.

· Path#.Size: The maximum size of the given folder, expressed in integer decimal numbers and

KB, MB, GB or TB units (no spaces/separators allowed). Use exact numbers, e.g. if the

Path1.Size should be 18.7TB the correct value is "Path1.Size=19149GB" (18.7 * 1024).

· Path#.LocalTmpPath: The exact path to the StorageConnector's (local) temporary folder for

the given PolicyID. The path will be used by StorageConnector e.g. for MD5 calculations of

89

Runtime Environment

 Copyright © 2021 NOA GmbH

files which are available on LTO tapes only and need to be retrieved first, or for temporarily

storing files retrieved from a remote location via the RemoteFileAgent (RFA).

Note: Depending on your network structure resolving hostnames might lead to

application timeouts. If you encounter timeout problems upon application startup you

should change the configuration to IP addresses.

StorageConnector DIVA:

[Default]
DivaManager=127.0.0.1:7101
DivaLogin=user/password
MediaName=Default
SourceDestName=noa-gpp1
BasePath=\\Server01\GPP\

[Policy:1]
ObjectCategory=noa_hires
MediaName=DIVAGRID
Path1.SourceDestName=noa-gpp1
Path1.BasePath=\\Server01\GPP\
Path2.SourceDestName=noa-gpp2
Path2.BasePath=\\Server01\GPP\

[Policy:2]
ObjectCategory=noa_lowres
MediaName=DIVAGRID
Path1.SourceDestName=noa-gpp1
Path1.BasePath=\\Server01\GPP\
Path2.SourceDestName=noa-gpp2
Path2.BasePath=\\Server01\GPP\

[Policy:3]
ObjectCategory=noa_aux
MediaName=DIVAGRID
Path1.SourceDestName=noa-gpp1
Path1.BasePath=\\Server01\GPP\
Path2.SourceDestName=noa-gpp2
Path2.BasePath=\\Server01\GPP\

The following variables are used:

· DivaManager: IP address and port to connect to the Diva Manager.

· DivaLogin: Username and password to login to Diva Manager (leave empty if not required).

· MediaName: The tape group or disk array on which the object should be saved (a DIVA

setting that should be provided by the DIVA administrator). A fallback value in case the entry is

missing on Policy section level.

· SourceDestName: The destination for the restore from DIVA (usually GPP for further

processing). A fallback value in case the entry is missing on Policy section level.

90

Runtime Environment

 Copyright © 2021 NOA GmbH

· PolicyID: For each Media Format that should be mounted to the archive, the PolicyID needs to

be linked to its Storage Properties (menu Catalog | Media Formats in mediARC GUI).

· ObjectCategory: The category of the object (a DIVA setting that should be provided by the

DIVA administrator). It's also used for archive path name in mediARC (see chapter mediARC

File Access).

· MediaName: The tape group or disk array on which the object should be saved (a DIVA

setting that should be provided by the DIVA administrator).

· Path#.SourceDestName: Destination for the restore from DIVA (usually GPP for further

processing).

· Path#.BasePath: The exact path for the restore from DIVA (usually GPP for further processing).

13.3.2 Windows Registry

When the StorageConnector runs the first time, it generates the registry keys automatically. After

stopping the StorageConnector service, the settings can be modified and get valid after the next

service start.

The path to the StorageConnector settings stored in the Windows registry is:

· 32-bit Windows:

HKEY_LOCAL_MACHINE\SOFTWARE\NOA\StorageConnector\

· 64-bit Windows:

HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432node\NOA\StorageConnector\

The following registry keys are available:

· ActTransactionID: The ID number of the last transaction. This is a private entry and should not

be modified!

· BindToIP: Specifies the IP network address to be used to listen to connection requests. If the

hosting computer has several IP addresses, the StorageConnector can be enforced to bind it's

TCP sockets to the specified address. Default value: '0.0.0.0'

· Compression: Specifies if the StorageConnector uses compressed client communication.

Possible values: '0' and '1'. Default value: '0' (disabled).

· CustomMountFileCopyCmd: A customer-specific feature used by the UNC version of

StorageConnector that allows to use a custom command-line executable for mounting the

source file into the archive. The command string should include the path to the command-line

executable plus the arguments. The placeholder string tags @@SourceFile@@ and

@@DestFile@@ can be used within the argument part, the tags will be replaced by the

(quoted) filenames when executing the command. Default value: none.

· DataRateRx: Obsolete, do not use! Default value: '0'.

· DebugLogFile: A valid path and file name for debug messages to be written to (e.g. "C:

\STORCONlogs\STORCON.log"). If a file name is provided, debug messages will be written to

this file. A new log file is started automatically by StorageConnector if the existing log file

exceeds a size limit (currently 20MB). The amount and detail of debug messages depends on

the setting of DebugLogLevel. If the file name is empty, no debug messages are written.

Specifying a debug log file is recommended for debugging and problem analysis only. During

normal operation, debug messages should be disabled. Writing a debug file may produce

91

Runtime Environment

 Copyright © 2021 NOA GmbH

significant amounts of data and may have an impact on application or system performance. It

is recommended to watch storage resources when writing a debug log file. A local path is

preferred over a server share to guarantee file access. Default value: none.

· DebugLogLevel: The level of detail for debug messages (on a scale from 1 to 5, where 5

represents the most detailed logging). A high level can result in a significant amount of data

written. Debug levels should be used with care and debugging should be switched off when

not needed. A general shortage in storage resources may influence system performance and

stability. Default value: "3".

Debug levels are:

"1" error messages

"2" warning messages

"3" normal messages

"4" info messages

"5" debug messages

· Encryption: Obsolete, do not use! Default value: '0' (disabled).

· Encryption Key: Obsolete, do not use! Default value: none.

· InterfacePort: The IP interface port number for listening for client connections. Default value:

"5707".

· LocalTmpPathMaxAge: Specifies a timeout in days for files stored on the local temp path.

Note that this option is not available in all StorageConnector versions. Default value: '2'.

· LogExpirationDays: The max. age of a transaction log file in days, before it is deleted by the

StorageConnector. Default value: '90'.

· LowTransactionPriority: File transactions are performed in threads. The threads have normal

priority by default but can be set to a lower priority by setting the property to '1'. Note that

this setting has only a limited effect on both file transfer speed and system resources usage.

Default value: '1'.

· MaxConcurrentTransactions: The maximum amount of concurrently running file transactions

to fine-tune the read/write performance of the storage. Default: '1'.

· PolicyFile: The complete path to the policy definition file that is used to map PolicyIDs to

physical storage directories. Default value: 'C:\Noa\StorageConnector\PolicyFile\Policy.ini'.

· TransactionLogDir: The complete path to the transaction log files. If the directory does not

exist, it is created on application startup. Default value: 'C:

\Noa\StorageConnector\TransactionLogs\'.

· UseCustomCopyCmd: Enables or disables the use of CustomMountFileCopyCmd by the UNC

version of StorageConnector. Default value: '0' (disabled).

13.3.3 mediARC File Access

The StorageConnector provides access to media files stored on the archive storage in the

Archive Domain. In order for the archive storage to be available to the FileManager, the paths

need to be defined in mediARC GUI using the menu Administration | File Access.

92

Runtime Environment

 Copyright © 2021 NOA GmbH

If StorageConnector UNC is used, the paths registered in File Access are identical to those

defined in the StorageConnector's local 'Policy.ini' file. Example:

· Policy File:

o [Policy:1]

Path1.Path=\\Server01\mediARC\Archive\BWF\

· File Access:

o Path: \\Server01\mediARC\Archive\BWF\

If StorageConnector DIVA is used, the paths names must match the ObjectCategory setting of

the StorageConnector's local 'Policy.ini' file. Example:

· Policy File:

o [Policy:1]

ObjectCategory=noa_hires

MediaName=DIVAGRID

Path1.SourceDestName=noa-gpp1

Path1.BasePath=\\server01\GPP\

Path2.SourceDestName=noa-gpp2

Path2.BasePath=\\server02\GPP\

Path3.SourceDestName=noa-gpp3

Path3.BasePath=\\server03\GPP\

· File Access:

o Path: noa-hires:\

For further information about File Access configuration in mediARC, please refer to the

mediARC Domains TechNote or the mediARC User Configuration and Rights

Management Administrator Manual.

93

Runtime Environment

 Copyright © 2021 NOA GmbH

StorageConnector GUI13.4

Warning: The StorageConnector GUI interface should only be used for debugging. If you

are not sure what you are doing, stop and consult NOA support instead!

While the StorageConnector is usually being run as a Windows service, it is possible to launch it

as a GUI application.

The StorageConnetor Window

The following controls are available:

· File Name: The full path to the file that is to be processed by one of the available functions /

buttons:

o in the case of Mount File it represents the full path to the source file that is to be mounted /

copied to the archive storage (e.g. 'c:\test.avi').

o in the case of Retrieve File it represents the full path to the destination file that is to be

created (e.g. 'c:\test.avi').

· Sms Uid: The full path:

o to which the file defined in File Name is to be copied by the Mount File function (e.g. '\

\Server01\Archive\BWF\0F\0F2E\0F2E56\test.avi'). If no Sms Uid is supplied,

StorageConnector will create a path based on the Policy path.

o of the file that is to be retrieved by the Retrieve Policy function.

o of the file that is to be modified by the Modify Policy function.

o of the file that is to be deleted by the Remove File function.

o of the file that is to be used for the MD5 calculation by the Calc MD5 function.

o of the file that is to be indexed by the Index File function.

· Policy: The policy to be used for the file operation. Default value: '1'.

· Priority: The priority of the file operation defined by an integer number between -2 and +2.

Default value: '0'.

· Access Method: A customer-specific feature used by the UNC version of StorageConnector

that allows RemoteFileAgent connections. When used, the source file is retrieved from RFA

94

Runtime Environment

 Copyright © 2021 NOA GmbH

unto the local temp path defined in the 'Policy.ini', and then moved to the archive. Possible

values: 'file://' or 'RemoteFileAgent://<server>:<port>'

Note that most of the below mentioned functions executed by the available buttons

generate a log file which can be used for debugging.

· Mount File: Transfer a file from local share into archive storage. The transfer is performed

asynchronously by StorageConnector. When “SmsUid” is predefined (non-empty) it is used if

possible. If not, the path and file name are generated. The optional 'Access Method' feature is

not supported by all StorageConnector versions.

· Mount File Verify: Same as Mount File, except the file copy process is verified by reading back

the mounted file from storage and comparing it to the given MD5 checksum.

· Retrieve File: Transfer a file from archive storage into a local share. The transfer is performed

asynchronously by StorageConnector.

o If 'Start Pos', 'End Pos', 'Index Type' and 'Index File' are defined, the Retrieve File function will

actually perform a Partial File Restore (PFR).

· Make Online: Transfer a file from offline into near-line (cache) storage within the archive

system. The transfer is performed asynchronously by StorageConnector. This feature is not

supported by all StorageConnector versions.

· Modify Policy: Change the file policy of an existing file within the archive system (and move

the file to another generated path in the process). The processing is performed asynchronously

by StorageConnector. This feature is not supported by all StorageConnector versions.

· Remove File: Delete a file within the archive system. The processing is performed

asynchronously by StorageConnector.

· Calc MD5: Read the MD5 checksum of a file within the archive system. The processing is

performed asynchronously by StorageConnector.

· Index File: Create an index file for partial file retrieve. Index data is written to “IndexDataFile”,

if necessary. This feature is not supported by all StorageConnector versions.

· Start Pos: The timecode of the beginning of the selection for Partial File Retrieve (PFR),

currently only supported for the StorageConnector DIVA.

· End Pos: The timecode of the end of the selection for Partial File Retrieve (PFR).

· Index Type: The type of index used for PFR of the file. Currently supported is only the

NoaAviFileIndexer for DIVA media files. Normally, the index file is created by

StorageConnector DIVA during Mount File and stored in the mediARC database, and is used

on retrieval to generate a valid sub-range of the original file.

· Part Retr File: Opens a file browser window to select the file containing the index of the

original file. The optional 'IndexFile' feature is not supported by all StorageConnector versions.

Note that currently true Partial File Retrieve (PFR) is only available for DIVA. While the

function can be tested with the StorageConnector UNC in GUI mode for debugging

purposes, in production when the full file is available over CIFS, the MediaButler is used to

do the sub-range read via ordinary file seek operations.

95

Runtime Environment

 Copyright © 2021 NOA GmbH

· Test Registry: Obsolete, used to test whether user privileges allow writing a value to the

Windows registry.

· From SmsUid: The path where the search for available files shall begin.

· Max File Count: The maximum number of results that shall be returned by the search.

· List FileRange: Search for and list all files available within the archive system. This feature is

not supported by all StorageConnector versions.

· UseCustomCopyCmd: If checked, a custom command-line executable can be used for

mounting the source file into the archive. The command string should include the path to the

command-line executable plus the arguments. The placeholder string tags @@SourceFile@@

and @@DestFile@@ can be used within the argument part, the tags will be replaced by the

(quoted) filenames when executing the command.

· Rescan Paths: Refresh the file index.

NOA actLINE

97

Runtime Environment

 Copyright © 2021 NOA GmbH

14 NOA actLINE

actLINE gives users a powerful set of tools that allows them to reshape content during the

archiving process while extending the effectiveness and power of NOA’s existing systems. Now,

instead of using a combination of products from different vendors, the Customer can perform all

of the functions in a workflow with one integrated system, which helps save time, ensure

compatibility, and lower costs.

The actLINE software package contains tools for triggering workflows, moving files among

workflows, decoding and transcoding files, recombining segmented archives, and much more.

The tools are actually processors that perform specific functions within a workflow. By grouping

together certain processors in certain combinations, actLINE helps the system process tasks more

efficiently. actLINE applications connect to the mediARC system through the ProcessorHost.

The following modules are part of the actLINE product family:

 AutoCut
automatically aligns and concatenates split or segmented recordings

coming from NOARecord into a single, digital file.

98

Runtime Environment

 Copyright © 2021 NOA GmbH

 BarcodeStation allows to execute actions triggered by a barcode scan.

 CLIP

a generic processor that can interface with any 3rd party product

that allows control via a command line prompt, to execute operating

system commands within a mediARC workflow. (Command Line

Interface Processor|

 DBScripter a script interpreter for executing scripts in mediARC.

 EMailer

a processor application built into a workflow that notifies users of

specific workflow conditions.

 FileCollector
moves the files detected by the FolderScanner to a public processing

path.

 FolderScanner
a monitoring application that continuously scans pre-determined

folders on an import client for new media and metadata files.

 LicenseServer allows to count and control the amount of granted licenses.

 MediaButler
a generic media transcoding processor that can perform multiple

audio and video transcodings.

 MetaDataFinder checks different pre-configured web data sources for metadata.

 QualityChecker
allows manual quality control which allows to watch, check, edit and

rate the ingested media content.

 ServiceConsole
provides a centralized, real-time overview of nearly all NOA

processors running on distributed servers.

 StorageConnector
a file access agent, which handles the access of archive storage to

the rest of the system.

 UniversalDialoger allows to present and collect data as a workflow task in a dialog.

 VideoFileAnalyzer
an interface to common 3rd party analyzer tools for video

container/codec quality analysis.

 VideoScanner
a video file normalizing gateway, translating a typically lossy

production format to a unified, mathematically lossless, and open

99

Runtime Environment

 Copyright © 2021 NOA GmbH

mezzanine format.

 WaveScanner

an audio normalizing gateway, which analyzes and scans a variety of

audio files for quality, decodes them optionally towards a linear

wave file, and reads out metadata.

For further information, please refer to the actLINE documentation.

NOA ingestLINE

101

Runtime Environment

 Copyright © 2021 NOA GmbH

15 NOA ingestLINE

The ingestLINE media transcription system from NOA allows users to digitize extensive media

archive collections without introducing new errors from faulty transfer parameters. ingestLINE

software components notify users of critical transfer problems during transcription. This quality-

related transfer information – collected at the moment of ingest – is then stored within ingest

reports of mediARC for further workflow management.

The following modules are part of the ingestLINE product family:

 NOARecord
a multi-stream ingest and transcription software for analog audio legacy

sources with full QC control.

 MediaLector
an ingest tool for quality-controlled mass migration of DATs and MiniDiscs

from one to eight parallel stations.

 CDLector
a mass CD-ripping system that is capable of handling up to eight parallel

drives.

102

Runtime Environment

 Copyright © 2021 NOA GmbH

 FrameLector
an ingest tool for efficient and quality controlled mass transcription of video

tapes.

For further information, please refer to the ingestLINE documentation.

Glossary

104

Runtime Environment

 Copyright © 2021 NOA GmbH

16 Glossary

Access Domains A mediARC domain where all members have the same physical and

logical possibilities for accessing a file.

Access rights The permissions an individual user or a computer application holds to

read, write, modify, delete or otherwise access a computer file.

Active Directory A directory service developed by Microsoft for Windows domain

networks. It authenticates and authorizes all users and computers in a

Windows domain type network.

Annotation The practice and the result of adding descriptive metadata to objects

in mediARC.

API An interface that defines interactions between mediARC and multiple

custom 3rd party software applications. It defines the kinds of calls or

requests that can be made, how to make them, the data formats that

should be used, the conventions to follow, etc.

Archive Asset

Management (AAM)

A category of software that takes care of centralizing, standardizing

and distributing digital archive files. Usually an AAM system manages

storing, ingesting, organizing, indexing, searching, processing,

outgesting and retrieving, etc. of digital archive assets (both files and

metadata), incl. version control and access control.

Archive Assets Archive assets represent relevant data that exists in a digital format,

has great value, and generally comes with the right to use. In mediARC

archive assets are objects that consist of media, metadata and rights.

Archive Catalogue A systematic (usually relational) list of metadata items in an archive.

Archive Domain The mediARC Access Domain that contains the archive, resident inside

an HSM or a disk storage.

Authentication The act of proving the identity of a computer system user.

Block level storage A concept in cloud-hosted data persistence where cloud services

emulate the behavior of a traditional block device, such as a physical

hard drive. Storage in such is organized as blocks. This emulates the

type of behavior seen in traditional disks or tape storage through

storage virtualization.

Cache A hardware or software component that stores data so that future

requests for that data can be served faster.

Database An organized collection of data, stored and accessed electronically

from a computer system.

Database dump A record of the table structure and/or the data from a database which

is most often used for backing up a database so that its contents can

be restored in the event of data loss.

Database patch A set of changes to a database designed to update, fix, or improve it.

Database schema The structure of a database, i.e. the organization of data as a blueprint

of how the database is constructed (divided into database tables in

the case of relational databases like the one used by mediARC).

Dongle A hardware device used for digital rights management, which typically

contains a license key or some other cryptographic protection

105

Runtime Environment

 Copyright © 2021 NOA GmbH

mechanism.

Explicit users mediARC users who are not members of the Windows domain but are

nevertheless granted access by the LicenseServer based on its local

user database.

Failover connection A separately defined connection to the mediARC database used for

connecting to the same database via another network route.

GarbageCollector An automatic cleanup process managed by the ProcessorHost which

removes files created by processor applications that match a certain

pre-defined set of conditions (e.g. age).

General Public Path

(GPP)

mediARC's central high-performance system storage, predominantly

used by Processors for task and workflow processing.

GUI application A software program with a graphical user interface that allows users to

interact with it through graphical controls (as opposed to text-based

CLI interfaces or Windows services running without an interface on the

background).

Checksum A small-sized block of data used to verify data integrity.

Ingest The process of importing data or other material into a system.

Instance A separately running copy of the same application.

JIRA The issue tracking system used by NOA.

LDAP An open and cross platform protocol used for directory services

authentication. (Lightweight Directory Access Protocol)

License An official permit to use a specific piece of software.

License model Licensing approaches officially supported by NOA. Currently

"restrictive" and "warning".

License peak The number of exceeded licenses.

Markers Metadata records describing time based events associated with and

linked to Media Items in mediARC, that are mostly generated

automatically based on Event Type templates (e.g. cue marker).

Media Content that is stored in the system's media archive as essence data.

Media essence The coded video and audio inside a video or audio file container (i.e.

not headers, footers, and metadata).

Metadata Descriptive data of both general and media-specific nature.

NoaComm A proprietary NOA communications protocol for high-level remote

procedure calls between programs in a mediARC system.

OAIS The ISO OAIS Reference Model represents the optimum standard to

create and maintain a digital archive repository over a long period of

time.

Outgest The process of exporting data or other material from a system.

Prelisten An audible reproduction of audio content stored in the archive.

Prelisten Cache A shared network directory in a mediARC User Domain where the

prelisten/preview media files used for streaming reside.

Preview An on-screen view of video content stored in the archive.

Processor A program or a program part, which can alter the state of a Task. It

runs on a Computer, which is the physical workstation.

Round robin An algorithm for assigning equal access to different resources in turns.

106

Runtime Environment

 Copyright © 2021 NOA GmbH

SID A unique, immutable identifier of a user, user group, or other security

principal in a Microsoft Windows operating system. (Security Identifier)

PL/SQL Oracle Corporation's procedural extension for SQL, a domain-specific

language used for managing data held in a relational database

management system. (Procedural Language for SQL)

System Domain The mediARC Access Domain that contains technology responsible for

media and metadata processing, ingesting, and outgesting.

Task A unit of execution in a mediARC workflow.

Throughput The sum of the data rates that can be delivered to all clients of a

system.

Timeout A parameter related to an enforced event designed to occur at the

conclusion of a predetermined elapsed time.

TNS A proprietary Oracle computer-networking technology, that operates

mainly for connection to Oracle databases. (Transparent Network

Substrate)

Transcoding engine Software used for the direct digital-to-digital conversion of one

encoding to another, typically in cases where a target device (or

workflow) does not support the format or has limited storage capacity

that mandates a reduced file size, or to convert incompatible or

obsolete data to a better-supported or modern file format.

Unicode An information technology standard for the consistent encoding,

representation, and handling of text expressed in most of the world's

writing systems, maintained by the Unicode Consortium.

URL Colloquially termed a "web address", URL is a reference to a web

resource that specifies its location on a computer network and a

mechanism for retrieving it.

User Domain The mediARC Access Domain that contains the users of the archive

who are allowed to see and hear content via proxies and get access to

a copy of archive files.

User Rights

Management (URM)

A security feature for controlling user access to specific parts or

features of a mediARC system that would normally be restricted to the

administrator role.

User synchronization A process that copies user and group information from an

organization's enterprise directory system (such as an Active Directory)

to mediARC's internal user database.

User token Contains the security credentials that identify the user for a login

session.

UTF-8 a variable-width character encoding used for electronic

communication (Unicode Transformation Format – 8-bit)

WIBUBOX A dongle based software which controls licensing for mediARC's

LicenseServer.

Workflow engine Configurable software that manages specific tasks and processes

inside mediARC.

Workflow Pre-configured processes managing any transaction in the system like

ingest or retrieval of archive content.

107

Runtime Environment

 Copyright © 2021 NOA GmbH

Impressum

109

Runtime Environment

 Copyright © 2021 NOA GmbH

17 Impressum

Copyright
All material provided within this document is under Copyright © 2021 NOA GmbH.

NOA GmbH
Johannagasse 42
1050 Vienna
Austria

http://www.noa-archive.com

All rights reserved. No parts of this work may be reproduced in any form or by any means – graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems – without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

Printed: May 2021 in Vienna, Austria.

Disclaimer
While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or
from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly
by this document.

Version Info
This document targets mediARC version 1.7.3 build 404.

Publishing Info
This document was published on 18 May 2021.

	Table of Contents
	Preface
	Summary
	Target Audience
	Prerequisites

	What Is mediARC
	System Architecture Overview
	mediARC Database
	Overview
	Installation
	Maintenance
	Patching The mediARC Schema

	mediARC Core Modules
	mediARC Network Ports
	mediARC Startup and Shutdown Sequence
	General Public Path

	LicenseServer (LS)
	Overview
	License File
	License Models
	License Terms and Conditions

	Installation
	Configuration
	Init Data Window
	User Rights Window
	User Rights Definitions

	DBDistributor (DBD)
	Overview
	Installation
	Configuration
	Database Connection Setup
	Failover Database Connection

	Init Data Window
	Log Window

	mediARC Client Applications
	mediARC GUI
	mediARC WEB

	mediARC API (MAPI)
	ProcessorHost (PH)
	Overview
	Installation
	Configuration
	Init Data Window
	Task Log Configuration

	Verify Connection

	GarbageCollector
	User Synchronization

	FileManager (FM)
	Overview
	Installation
	Configuration
	Init Data Window
	mediARC File Access

	FileManager Instances

	RemoteFileAgent (RFA)
	Overview
	Installation
	Configuration
	Init Data Window
	mediARC File Access
	Folder Monitor
	Access Monitor

	WebPreviewServer (WPS)
	Overview
	Installation
	Configuration
	Init Data Window
	Prelisten Cache

	Status Information

	ServiceConsole (SC)
	Overview
	Adding Services Manually
	Editing Services Manually

	Installation
	Configuration
	Settings Window
	User Authentication

	StorageConnector (STORCON)
	Overview
	Installation
	Configuration
	Policy File
	Windows Registry
	mediARC File Access

	StorageConnector GUI

	NOA actLINE
	NOA ingestLINE
	Glossary
	Impressum

